The Role of Microbial Enzymes in Organic Waste Bioconversion: A Biochemical and Renewable Energy Perspective
DOI:
10.29303/jpm.v20i5.9343Published:
2025-07-19Issue:
Vol. 20 No. 5 (2025): July 2025Keywords:
Biochemistry; Bioconversion; Microbial Enzymes; Organic Waste; Renewable EnergyArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
This study explores the role of microbial enzymes in the bioconversion of organic waste into renewable energy sources such as bioethanol, biogas, and biohydrogen. Employing a qualitative literature review, this research applies a systematic thematic synthesis to 28 scientific sources, including journal articles, policy reports, and textbooks published between 2018 and 2024. The findings indicate that enzymes such as cellulase, amylase, and lipase play a dominant role in the hydrolysis of organic substrates, breaking down complex biomolecules into glucose, amino acids, and fatty acids. These hydrolysis products are then fermented anaerobically by microbes like Saccharomyces cerevisiae and Clostridium spp. to generate various bioenergy outputs. In addition, the study highlights the importance of biochemical characteristics such as enzyme kinetics, stability, and substrate specificity, which are critical for improving energy conversion efficiency. Operational challenges include high production costs and suboptimal enzyme performance under non-laboratory conditions. However, promising innovations have emerged, including enzyme immobilization techniques, co-fermentation strategies, and the use of genetically engineered microorganisms. Case studies from India, Germany, and Indonesia demonstrate the practical potential of microbial enzyme-based bioconversion systems in transforming agricultural and household waste into valuable energy products. The integration of microbial enzymes into waste management not only reduces environmental pollution but also supports clean energy transition efforts. This research implies the need for policy alignment and educational curriculum integration in environmental science to accelerate public adoption and awareness. This research implies the need for policy alignment and educational curriculum integration in environmental science to accelerate public adoption and awareness.
References
Kementerian Lingkungan Hidup dan Kehutanan (KLHK), Sistem Informasi Pengelolaan Sampah Nasional (SIPSN), 2022. [Online]. Available: https://sipsn.menlhk.go.id
Tim Peneliti Universitas Lampung, Laporan Hasil Studi Awal Potensi Biokonversi Limbah Organik di Kota Bandar Lampung, LPPM Universitas Lampung, 2023.
A. Suhartono, R. Mulyani, and L. Hartati, “Dampak Lingkungan dari Metode Penanganan Sampah Konvensional,” J. Tek. Lingkungan, vol. 14, no. 2, pp. 88–94, 2021.
R. Gupta, Q. K. Beg, and P. Lorenz, “Bacterial alkaline proteases: Molecular approaches and industrial applications,” Appl. Microbiol. Biotechnol., vol. 59, no. 1, pp. 15–32, 2017. doi: 10.1007/s00253-002-0975-y
S. Raveendran, B. Parameswaran, and A. Pandey, “Production of bioethanol from lignocellulosic biomass using thermostable microbial enzymes,” Renew. Energy, vol. 119, pp. 205–219, 2018. doi: 10.1016/j.renene.2017.12.008
D. Sari, A. Fitriani, and S. Wibowo, “Stabilitas Enzim Mikrobial pada Fermentasi Limbah Terbuka,” J. Bioteknol. Tropis, vol. 9, no. 1, pp. 55–62, 2020.
A. Nandini and D. Putra, “Kinetika dan Aktivitas Enzim dalam Biokonversi Energi,” J. Kimia dan Lingkungan, vol. 13, no. 2, pp. 44–53, 2021.
M. Widodo and Z. Arifin, “Peran Enzim Mikrobial dalam Pengembangan Energi Bersih,” J. Energi Terbarukan Indones., vol. 7, no. 3, pp. 101–109, 2022.
D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and PRISMA Group, “Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement,” PLoS Med., vol. 6, no. 7, p. e1000097, 2009. doi: 10.1371/journal.pmed.1000097
A. M. Methley, S. Campbell, C. Chew-Graham, R. McNally, and S. Cheraghi-Sohi, “PICO, PICOS and SPIDER: A comparison study,” BMC Health Serv. Res., vol. 14, p. 579, 2014. doi: 10.1186/s12913-014-0579-0
W. Han, Z. Yu, and S. Zhang, “Glucoamylase production and hydrogen generation from starch,” Bioresour. Technol., vol. 218, pp. 1214–1220, 2016. doi: 10.1016/j.biortech.2016.06.107
D. Haldar and M. K. Purkait, “A kinetic study of enzymatic hydrolysis of cellulose,” Process Biochem., vol. 69, pp. 121–128, 2018. doi: 10.1016/j.procbio.2018.04.018
T. Subsamran, N. Srisuk, and S. Vinitnantharat, “Biocatalytic ethanol production from vetiver grass,” Biocatal. Agric. Biotechnol., vol. 22, p. 101371, 2019. doi: 10.1016/j.bcab.2019.101371
D. Chauhan et al., “Valorization of potato waste,” Chemosphere, vol. 287, p. 131986, 2022. doi: 10.1016/j.chemosphere.2021.131986
Y. Jin et al., “Bioethanol production from pretreated straw,” Energy, vol. 198, p. 117345, 2020. doi: 10.1016/j.energy.2020.117345
W. Han et al., “Enhanced H₂ production through co-culture,” Sci. Rep., vol. 6, p. 37783, 2016. doi: 10.1038/srep37783
S. Yang et al., “Enzyme residue kinetics in biomass hydrolysis,” BioResources, vol. 17, no. 2, pp. 3259–3273, 2022.
Y. Zhang et al., “Microbial communities in anaerobic digestion of organic waste,” Bioresour. Technol., vol. 321, p. 124500, 2021. doi: 10.1016/j.biortech.2020.124500
A. Patel et al., “Pretreatment optimization for biohydrogen production,” arXiv preprint, arXiv:2105.01984, 2021. [Online]. Available: https://arxiv.org/abs/2105.01984
A. Singh et al., “Enzyme-assisted composting for food waste valorization,” Sci. Total Environ., vol. 905, p. 167874, 2024. doi: 10.1016/j.scitotenv.2023.167874
N. Ramesh et al., “Review on solid-state fermentation,” Biotechnol. Adv., vol. 53, p. 107715, 2021. doi: 10.1016/j.biotechadv.2021.107715
A. A. Abdillah et al., “Application of FVW enzymes in circular food economy,” Sustainability, vol. 15, no. 5, p. 3541, 2023. doi: 10.3390/su15053541
S. Wu et al., “Strategies to enhance stability and reuse of industrial enzymes,” Bioresour. Technol. Rep., Multiple Issues, 2021–2023. doi: 10.1016/j.biteb.2021.100827
S. Datta, L. R. Christena, and Y. R. S. Rajaram, “Enzyme immobilization: an overview,” 3 Biotech, vol. 3, no. 1, pp. 1–9, 2013. doi: 10.1007/s13205-012-0071-7
N. Srivastava, M. Srivastava, and P. W. Ramteke, “Advances in microbial enzyme biotechnology,” Bioengineered, vol. 11, no. 1, pp. 35–52, 2020. doi: 10.1080/21655979.2019.1680483
W. Li et al., “Co-fermentation of food waste and corn stalk,” Bioresour. Technol., vol. 272, pp. 72–78, 2019. doi: 10.1016/j.biortech.2018.09.118
Z. A. Zainudin and R. A. Rahim, “Microbial enzymes in organic waste bioconversion,” J. Clean. Prod., vol. 253, p. 119870, 2020. doi: 10.1016/j.jclepro.2020.119870
A. K. Chandel et al., “Bioethanol production from lignocellulosic biomass,” in Springer, pp. 99–123, 2019. doi: 10.1007/978-981-13-3810-2_6
S. A. Villarreal-Soto et al., “Understanding kombucha tea fermentation,” J. Food Sci., vol. 83, no. 3, pp. 580–588, 2018. doi: 10.1111/1750-3841.14068
A. Patel et al., “Biogas production using kitchen waste,” Renew. Energy, vol. 147, pp. 1357–1364, 2020. doi: 10.1016/j.renene.2019.09.059
J. K. Saini et al., “Efficient bioethanol production from wheat straw using optimized enzymatic hydrolysis,” Bioresour. Technol., vol. 340, p. 125714, 2021. doi: 10.1016/j.biortech.2021.125714
R. M. Putri et al., “Biohydrogen production from oil palm waste using Aspergillus niger,” Biochem. Eng. J., vol. 181, p. 108394, 2022. doi: 10.1016/j.bej.2022.108394
R. Jayabalan, R. V. Malbasa, E. S. Loncar, J. S. Vitas, and M. Sathishkumar, “A review on kombucha tea,” Compr. Rev. Food Sci. Food Saf., vol. 13, no. 4, pp. 538–550, 2014. doi: 10.1111/1541-4337.12073
R. Singh, M. Kumar, A. Mittal, and P. K. Mehta, “Microbial enzymes: Industrial progress in 21st century,” 3 Biotech, vol. 6, no. 2, p. 174, 2016. doi: 10.1007/s13205-016-0485-8
J. R. Cherry and A. L. Fidantsef, “Directed evolution of industrial enzymes,” Curr. Opin. Biotechnol., vol. 14, no. 4, pp. 438–443, 2003. doi: 10.1016/S0958-1669(03)00099-5
D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry, 7th ed. New York: W. H. Freeman and Company, 2017.
A. Pandey, C. R. Soccol, and D. Mitchell, “New developments in solid state fermentation: I,” Process Biochem., vol. 35, no. 10, pp. 1153–1169, 2000. doi: 10.1016/S0032-9592(00)00152-7
M. K. Bhat and S. Bhat, “Cellulose degrading enzymes and their potential industrial applications,” Biotechnol. Adv., vol. 15, no. 3–4, pp. 583–620, 1997. doi: 10.1016/S0734-9750(97)00006-8
K. E. Jaeger and T. Eggert, “Lipases for biotechnology,” Curr. Opin. Biotechnol., vol. 13, no. 4, pp. 390–397, 2002. doi: 10.1016/S0958-1669(02)00341-5
L. R. Lynd et al., “Microbial cellulose utilization,” Microbiol. Mol. Biol. Rev., vol. 66, no. 3, pp. 506–577, 2002. doi: 10.1128/MMBR.66.3.506-577.2002
E. Rouches et al., “Hydrolysis pre-treatment of lignocellulosic biomass,” Rev. Environ. Sci. Biotechnol., vol. 15, no. 1, pp. 43–73, 2016. doi: 10.1007/s11157-015-9392-8
T. Zhang et al., “Biohydrogen production from starch in wastewater,” J. Environ. Manag., vol. 69, no. 2, pp. 149–156, 2003. doi: 10.1016/S0301-4797(03)00114-5
I. Angelidaki and W. Sanders, “Assessment of the anaerobic biodegradability of macropollutants,” Rev. Environ. Sci. Biotechnol., vol. 3, no. 2, pp. 117–129, 2004. doi: 10.1007/s11157-004-2502-3
A. Demirbas, “Biohydrogen: For future engine fuel demands,” Energy Sources Part A, vol. 31, no. 20, pp. 1801–1809, 2009. doi: 10.1080/15567030802097059
Yadvika et al., “Enhancement of biogas production from solid substrates,” Bioresour. Technol., vol. 95, no. 1, pp. 1–10, 2004. doi: 10.1016/j.biortech.2004.02.010
P. Shanmugam and N. J. Horan, “Optimisation of anaerobic digestion of municipal solid waste,” Bioresour. Technol., vol. 100, no. 14, pp. 3658–3664, 2009. doi: 10.1016/j.biortech.2009.01.025
International Energy Agency (IEA), Renewable Energy Policies in a Time of Transition: Bioenergy Focus, 2023. [Online]. Available: https://www.iea.org/reports
D. Wibowo and Suprihatin, “Pemanfaatan Enzim Mikrobial Bacillus subtilis dalam Produksi Biogas dari Limbah Dapur,” J. Energi dan Lingkungan, vol. 12, no. 2, pp. 89–96, 2020. doi: 10.22146/jel.2020.48733
B. G. Hermann and K. Blok, “Current status of bio-refinery concepts,” Biofuels Bioprod. Biorefin., vol. 9, no. 5, pp. 521–532, 2015. doi: 10.1002/bbb.1560
A. Singh and S. Sharma, “Biogas generation from kitchen waste using microbial enzymes,” Renew. Energy Res., vol. 44, no. 1, pp. 33–41, 2019. doi: 10.1016/j.renene.2019.03.022
G. Müller and J. Hofmann, “Second-generation bioethanol production from wheat straw,” Bioenergy Technol. J., vol. 15, no. 3, pp. 144–152, 2021. doi: 10.1016/j.biotech.2021.02.007
E. Rahmawati and N. Yuliana, “Pemanfaatan limbah kelapa sawit untuk produksi biohidrogen menggunakan Aspergillus niger,” J. Energi Terbarukan, vol. 8, no. 2, pp. 78–85, 2022. doi: 10.14710/jet.2022.8902
A. K. Chandel and O. V. Singh, Biotechnology for Biofuels: A Sustainable Green Energy Solution, Springer, 2018. doi: 10.1007/978-3-319-94797-3
Author Biography
Welly Anggraini, Faculty of Science and Technology, Universitas Islam Negeri Raden Intan Lampung
License
Copyright (c) 2025 Welly Anggraini

This work is licensed under a Creative Commons Attribution 4.0 International License.
The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.
2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).