Isolation and Characterization of Cellulose Whiskers from Lampung Sugarcane Bagasse, Indonesia
DOI:
10.29303/jpm.v20i5.9371Published:
2025-07-22Issue:
Vol. 20 No. 5 (2025): July 2025Keywords:
Acid Hydrolisis; Cellulose Isolation; Cellulose Whiskers; Sugarcane Bagasse; Sugarcane WasteArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
Sugarcane bagasse, the fibrous residue from sugar production, is an abundant agricultural waste in Indonesia, especially in Lampung, one of the country’s leading sugarcane-producing provinces. Its high lignocellulosic content makes it a promising alternative source of cellulose. However, effective extraction and conversion into high-value products such as cellulose whiskers require optimized chemical processes. This study aims to isolate cellulose from sugarcane bagasse using alkali and peroxide treatments and convert it into cellulose whiskers through hydrolysis using sulfuric acid (H₂SO₄) at varying concentrations (4–12 M). The objective is to evaluate the optimal acid concentration that produces cellulose whiskers with desirable morphology and crystallinity. Cellulose isolation was achieved through sequential NaOH and H₂O₂ treatments, significantly reducing lignin and hemicellulose content and yielding α-cellulose at 88.37%. Hydrolysis of the purified cellulose was then performed with H₂SO₄. The resulting materials were characterized using FTIR, SEM, XRD, and TGA. FTIR confirmed the removal of non-cellulosic components, while SEM showed that only 10 M H₂SO₄ produced well-defined whiskers with nanoscale dimensions (200–700 nm in length and 10–50 nm in diameter). Lower acid concentrations resulted in incomplete hydrolysis, while excessive degradation occurred at 12 M. XRD analysis revealed an increase in crystallinity to 86.7%, indicating the removal of amorphous regions and successful formation of crystalline whiskers. TGA analysis showed different thermal degradation patterns between isolated cellulose and whiskers, supporting structural transformation. Cellulose whiskers can subsequently be utilized as a reinforcing material in the fabrication of plastic films for water–oil separation and dye adsorption applications in laboratory experiments.
References
H. S. Kusuma, D. Permatasari, W. K. Umar, and S. K. Sharma, “Sugarcane bagasse as an environmentally friendly composite material to face the sustainable development era,” Biomass Convers. Biorefinery, no. April, 2023, doi: 10.1007/s13399-023-03764-2.
E. Respati, “Outlook Komoditas Perkebunan Tebu,” Pus. Data dan Sidtem Inf. Pertan. Sekertariat Jenderal - Kementeri. Pertan., pp. 1–94, 2022, [Online]. Available: https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf
Alokika, Anu, A. Kumar, V. Kumar, and B. Singh, “Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective,” Int. J. Biol. Macromol., vol. 169, pp. 564–582, 2021, doi: 10.1016/j.ijbiomac.2020.12.175.
C. R. Soccol et al., “Bioethanol from lignocelluloses: Status and perspectives in Brazil,” Bioresour. Technol., vol. 101, no. 13, pp. 4820–4825, 2010, doi: 10.1016/j.biortech.2009.11.067.
T. C. Mokhena, M. J. Mochane, T. E. Motaung, L. Z. Linganiso, O. M. Thekisoe, and S. P. Songca, “Sugarcane Bagasse and Cellulose Polymer Composites,” Sugarcane - Technol. Res., 2018, doi: 10.5772/intechopen.71497.
M. Madhoushi, A. Malakani, G. Ebrahimi, and A. Rashidi, “Influence of spherical-shaped carbon nanoparticles on the mechanical properties of a foamed sugarcane bagasse/polypropylene composite,” Ind. Crops Prod., vol. 172, no. September, p. 114041, 2021, doi: 10.1016/j.indcrop.2021.114041.
A. O. Kane et al., “Combined liquid hot water and sulfonation pretreatment of sugarcane bagasse to maximize fermentable sugars production,” Ind. Crops Prod., vol. 201, no. September, 2023, doi: 10.1016/j.indcrop.2023.116849.
Y. N. Solier, P. Mocchiutti, M. N. Cabrera, M. C. N. Saparrat, M. Á. Zanuttini, and M. C. Inalbon, “Alkali-peroxide treatment of sugar cane bagasse. Effect of chemical charges on the efficiency of xylan isolation and susceptibility of bagasse to saccharification,” Biomass Convers. Biorefinery, vol. 12, no. 3, pp. 567–576, 2022, doi: 10.1007/s13399-020-00776-0.
S. Elanthikkal, T. Francis, and S. Akhtar, “Utilization of Areca Nut Leaf Sheath Fibers for the Extraction of Cellulose Whiskers,” J. Nat. Fibers, vol. 18, no. 9, pp. 1261–1273, 2021, doi: 10.1080/15440478.2019.1689885.
Z. YU, Z. YUAN, C. XIA, and C. ZHANG, “High Temperature Flexural Deformation Properties of Engineered Cementitious Composites (ECC) with Hybrid Fiber Reinforcement,” Res. Appl. Mater. Sci., vol. 2, no. 2, pp. 17–26, 2020, doi: 10.33142/rams.v2i2.3168.
S. Eyni Gavabari, A. Goudarzi, M. Shahrousvand, and A. Asfaram, “Preparation of novel polyurethane/activated carbon/cellulose nano-whisker nanocomposite film as an efficient adsorbent for the removal of methylene blue and basic violet 16 dyes from wastewater,” Sep. Purif. Technol., vol. 330, no. PC, p. 125285, 2024, doi: 10.1016/j.seppur.2023.125285.
Z. Liu et al., “Durable PVA-based hydrogel sponge with cellulose whiskers embedded in the 3D interconnected channels for efficient oil/water separation,” Carbohydr. Polym., vol. 352, no. January, p. 123251, 2025, doi: 10.1016/j.carbpol.2025.123251.
M. I. Ofem, E. B. Ene, P. A. Ubi, S. O. Odey, and D. O. Fakorede, “Properties of cellulose reinforced composites: A review,” Niger. J. Technol., vol. 39, no. 2, pp. 386–402, 2020, doi: 10.4314/njt.v39i2.9.
F. Whba Universiti Kebangsaan Malaysia Faizal Mohamed and U. Kebangsaan Malaysia Mohd Syukri Yahya, “Characterization of Cellulose Nanocrystals (CNCs) Derived from Microcrystalline Cellulose (MCC) Synthesized Using Acid Hydrolysis Method,” no. Mcc, pp. 0–35, 2022, [Online]. Available: https://doi.org/10.21203/rs.3.rs-2193287/v1
K. Dhali, M. Ghasemlou, F. Daver, P. Cass, and B. Adhikari, “A review of nanocellulose as a new material towards environmental sustainability,” Sci. Total Environ., vol. 775, p. 145871, 2021, doi: 10.1016/j.scitotenv.2021.145871.
W. T. Wulandari, A. Rochliadi, and I. M. Arcana, “Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse,” IOP Conf. Ser. Mater. Sci. Eng., vol. 107, no. 1, 2016, doi: 10.1088/1757-899X/107/1/012045.
I. Iliyin, H. Purwaningsih, and T. T. Irawadi, “Isolation and Characterization of Cellulose from Banana Stems using Microwave Heating,” J. Kim. Val., vol. 6, no. 2, pp. 169–176, 2020, doi: 10.15408/jkv.v6i2.15962.
P. Kumar, K. Miller, A. Kermanshahi-pour, S. K. Brar, R. F. Beims, and C. C. Xu, “Nanocrystalline cellulose derived from spruce wood: Influence of process parameters,” Int. J. Biol. Macromol., vol. 221, no. March, pp. 426–434, 2022, doi: 10.1016/j.ijbiomac.2022.09.017.
D. N. Barman, M. A. Haque, M. M. Hossain, S. K. Paul, and H. D. Yun, “Deconstruction of Pine Wood (Pinus sylvestris) Recalcitrant Structure Using Alkali Treatment for Enhancing Enzymatic Saccharification Evaluated by Congo Red,” Waste and Biomass Valorization, vol. 11, no. 5, pp. 1755–1764, 2020, doi: 10.1007/s12649-018-00547-z.
B. Fauziyah, M. Yuwono, Isnaeni, N. Nahdhia, and F. Sholihah, “Isolation and Characterization of Sugarcane (Saccharum officinarum L.) Bagasse Cellulose Hydrolyzed with Acid Variation,” Trop. J. Nat. Prod. Res., vol. 6, no. 6, pp. 856–862, 2022, doi: 10.26538/tjnpr/v6i6.4.
W. R. Kunusa, R. Abdullah, K. Bilondatu, and W. Z. Tulie, “Analysis of Cellulose Isolated from Sugar Bagasse: Optimization and Treatment Process Scheme,” J. Phys. Conf. Ser., vol. 1422, no. 1, 2020, doi: 10.1088/1742-6596/1422/1/012040.
G. T. Melesse, F. G. Hone, and M. A. Mekonnen, “Extraction of Cellulose from Sugarcane Bagasse Optimization and Characterization,” Adv. Mater. Sci. Eng., vol. 2022, 2022, doi: 10.1155/2022/1712207.
J. X. Sun, X. F. Sun, H. Zhao, and R. C. Sun, “Isolation and characterization of cellulose from sugarcane bagasse,” Polym. Degrad. Stab., vol. 84, no. 2, pp. 331–339, 2004, doi: 10.1016/j.polymdegradstab.2004.02.008.
M. C. Alvarado, M. C. C. D. Ignacio, M. C. G. Acabal, A. R. P. Lapuz, and K. F. Yaptenco, “Review on nanocellulose production from agricultural residue through response surface methodology and its applications,” Nano Trends, vol. 8, no. July, p. 100054, 2024, doi: 10.1016/j.nwnano.2024.100054.
J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and x-ray microanalysis. 2017. doi: 10.1007/978-1-4939-6676-9.
K. S. Salem et al., “Comparison and assessment of methods for cellulose crystallinity determination,” Chem. Soc. Rev., vol. 52, no. 18, pp. 6417–6446, 2023, doi: 10.1039/d2cs00569g.
L. Wu, F. Tian, and J. Sun, “On the use of cellulose nanowhisker as reinforcement in all-cellulose composite membrane from corn stalk,” J. Appl. Polym. Sci., vol. 138, no. 15, pp. 1–12, 2021, doi: 10.1002/app.50206.
L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, “An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer,” Text. Res. J., vol. 29, no. 10, pp. 786–794, 1959, doi: 10.1177/004051755902901003.
A. I. Akinjokun, L. F. Petrik, A. O. Ogunfowokan, J. Ajao, and T. V. Ojumu, “Isolation and characterization of nanocrystalline cellulose from cocoa pod husk (CPH) biomass wastes,” Heliyon, vol. 7, no. 4, p. e06680, 2021, doi: 10.1016/j.heliyon.2021.e06680.
M. S. Rana et al., “Morphological, Spectroscopic and Thermal Analysis of Cellulose Nanocrystals Extracted from Waste Jute Fiber by Acid Hydrolysis,” Polymers (Basel)., vol. 15, no. 6, pp. 1–15, 2023, doi: 10.3390/polym15061530.
S. K. Thomas et al., “Isolation and characterization of cellulose nanowhiskers from Acacia caesia plant,” J. Appl. Polym. Sci., vol. 138, no. 15, pp. 1–9, 2021, doi: 10.1002/app.50213.
O. Y. Alothman, L. K. Kian, N. Saba, M. Jawaid, and R. Khiari, “Cellulose nanocrystal extracted from date palm fibre: Morphological, structural and thermal properties,” Ind. Crops Prod., vol. 159, no. October 2020, p. 113075, 2021, doi: 10.1016/j.indcrop.2020.113075.
R. Mansa and S. Zou, “Thermogravimetric analysis of microplastics: A mini review,” Environ. Adv., vol. 5, p. 100117, 2021, doi: 10.1016/j.envadv.2021.100117.
S. Mishra, “New Excipient For Oral Drug Delivery: CNC Derived From Sugarcane Bagasse-Derived Microcrystalline Cellulose,” ACS Omega, vol. 9, no. 17, pp. 19353–19362, 2024, doi: 10.1021/acsomega.4c00497.
S. M. Mirabolghasemi, M. Najafi, A. Azizi, and M. Haji Bagherian, “Physico-mechanical properties of polylactic acid bio-nanocomposites filled by hybrid nanoparticles,” Polym. Polym. Compos., vol. 29, no. 9, pp. S1510–S1519, 2021, doi: 10.1177/09673911211060132.
Author Biographies
Muhammad Ridho Afifi, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University
Zahratul Aini, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University
Tun Tedja Irawadi, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University
Henny Purwaningsih, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University
License
Copyright (c) 2025 Muhammad Ridho Afifi, Zahratul Aini, Tun Tedja Irawadi, Henny Purwaningsih

This work is licensed under a Creative Commons Attribution 4.0 International License.
The following terms apply to authors who publish in this journal:
1. Authors retain copyright and grant the journal first publication rights, with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY License) that allows others to share the work with an acknowledgment of the work's authorship and first publication in this journal.
2. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), acknowledging its initial publication in this journal.
3. Before and during the submission process, authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website), as this can lead to productive exchanges as well as earlier and greater citation of published work (See The Effect of Open Access).