The Effect of Nanocurcumin Particle Sizes on the Inhibitory Potential on Staphylococcus aureus and Escherichia coli
Authors
Fiona Rosslyn Tnunay , Donn Richard Ricky , Joshua H. L. TobingDOI:
10.29303/jbt.v25i4a.10598Published:
2025-11-14Issue:
Vol. 25 No. 4a (2025): Special IssueKeywords:
Antibacterial activity, Curcumin, Escherichia coli, Nanoparticles , Staphylococcus aureusArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
Increasing antibiotic resistance against major pathogens like Staphylococcus aureus and Escherichia coli are necessitates as alternative antimicrobials. Curcumin, known for its antibacterial properties, suffers from low bioavailability; thus, developing it into nanocurcumin using the stabilizer PVP is aims in enhancing its efficacy. This study was conducted to investigate the effect of nanocurcumin particle sizes (controlled by three PVP K30 concentrations: 1.5, 3.0, and 4.5 g/mL) on its inhibitory potential on Staphylococcus aureus and Escherichia coli. The research is a true laboratory experimental design, synthesizing nanocurcumin via a Rotor Stator Homogenizer and assessing antibacterial activity using the disc diffusion method on Mueller Hinton Agar (MHA), with inhibition zone diameters are analyze using One-Way ANOVA. All tested samples exhibit weak inhibitory potential. The ANOVA revealed no significant effect against Staphylococcus aureus (p = 0.377), but shows a significant effect against Escherichia coli (p = 0.042). These finding shows that particle size variations of nanocurcumin influence against Gram-negative bacteria, with the smallest average particle size (20.6 nm) obtained at 1.5 g/mL PVP K30. In conclusion, nanocurcumin size variations significantly affect the inhibition against Escherichia coli but not against Staphylococcus aureus, a differential effect attributed to the distinct cell wall structures of the two bacteria types. Future studies are recommended to explore optimization methods to improve nanocurcumin's efficacy, especially against Staphylococcus aureus.
References
Ahmad, Rahwan (2017). Kontaminasi Bakteri Escherichia Coli pada Makanan Jajanan Di Pasar Mardika Kota Ambon. 2(1). Dikutip pada 02 Februari 2025 dari DOI: http://dx.doi.org/10.33846/ghs.v2i1.58.
Ardila, Ayu Ismi Chairani, Nurdiati, N., & Fitriyah, N. H (2017). Fabrikasi Nanopartikel Herbal dalam Tablet Effervescent Menggunakan Metode Solvent Emulsificassion Diffusion Kombinasi High Speed Homogenizer. Dikutip pada 22 Februari 2025 dari https://doi.org/10.33005/semnastek.v1i1.2042.
Azis, Abdul (2019). Kunyit (Curcuma Domestica Val) Sebagai Obat Antipiretik. Jurnal Ilmu Kedokteran dan Kesehatan, 6(2), 116–120. Dikutip pada 03 Maret 2025 dari Https://Doi.Org/10.33024/Jikk.V6i2.2265.
Banjarnahor, Relina, Cindy Octavia, Dini Izza Angraini, Ratih Dewi Lestari., Jaurani Nurul Putri, Rahayu Diyati, Alvi, Selvi Heriani Putri., & Ashif Irvan Yusuf., (2025). Potential of Bacteria Escherichia Coli and Staphylococus Aureus as Degradation Agent Waste Used Oil. Jurnal Biologi Tropis, 25(2), 2068–2074. Dikutip pada 11 Maret 2025 dari Https://Doi.Org/10.29303/Jbt.V25i2.8956.
Buldani, Ahmad, Retno Yulianti, & Pertiwi Soedomo. (2017). Uji Efektivitas Ekstrak Rimpang Bangle (Zingiber Cassumunar Roxb.) Sebagai Antibakteri terhadap Vibrio Cholerae dan Staphylococcus Aureus secara In Vitro dengan Metode Difusi Cakram. Dikutip pada 15 Maret 2025 dari https:// doi.org/10.35328/senit.v1i1.569.
Candrawati, Tania Happy, Nurmi Hasbi, & Rosyunita. (2025). Profile of Staphylococcus Aureus Originating from Nasal Cavity Swabs of Food Handlers at the University of Mataram Canteen. Jurnal Biologi Tropis, 25(2), 1611–1622. Dikutip pada 18 Maret 2025 dari Https://Doi.Org/10.29303/Jbt.V25i2.8742.
Farida, Helmia, Herawati, MM Hapsari., Harsoyo Notoatmodjo, & Hardian., (2016). Penggunaan Antibiotik Secara Bijak Untuk Mengurangi Resistensi Antibiotik, Studi Intervensi di Bagian Kesehatan Anak RS Dr. Kariadi. Sari Pediatri, 10(1), 34. Dikutip pada 19 Maret 2025 dari Https://Doi.Org/10.14238/Sp10.1.2008.34-41
Febriawan Rahmad (2020). Manfaat Senyawa Kurkumin dalam Kunyit Pada Pasien Diare. Dikutip pada 21 Maret 2025 dari https://www.google.com/search?q=https://doi.org/10.38008/jmh.v2i1.63.
Forestryana Dyera, & Hafis Ramadhan (2020). Formulasi Dispersi padat Pentagamavunon-0 (PGV-0) dalam Bentuk Sediaan Hidrogel dengan Kombinasi Basis Polimer Kitosan-Agar-PVP. Jurnal Sains Farmasi & Klinis, 7(1), 67. Dikutip pada 10 April 2025 dari Https://Doi.Org/10.25077/Jsfk.7.1.66-75.2020.
Gholami, M., Zeighami, H., Bikas, R., Heidari, A., Rafiee, F., & Haghi, F. (2020). Inhibitory activity of metal-curcumin complexes on quorum sensing related virulence factors of Pseudomonas aeruginosa PAO1. AMB Express, 10(1), 111.
Gunawan Asep Tata, Tegu Widiyanto, Bahri, Bahri, & Lilis Suryani (2022). Survey terhadap Keberadaan Bakteri Staphylococcus Aureus di Industri Rumah Tangga Makanan Jajanan Cireng Wilayah Kecamatan Baturraden Kabupaten Banyumas Tahun 2022. Dikutip pada 15 april 2025 dari DOI: https://doi.org/10.31983/keslingmas.v41i4.9416.
Hanafi Agustin, Hayatunnufus Alifa, Baidluri Anisa Rifa'tul Ulya, Yuan Marcelita, Tania Thirzalia Locarno, Tiara Proboray, & Amara Aulia. (2024). Potensi Nanourcumin Sebagai Terapi pada Oral Squamous Cell Carcinoma (Tinjauan Literatur). Dikutip pada 17 Februari 2025 dari https://doi.org/10.21776/ub.eprodenta.2024.008.02.9.
Khasanah, Farianti Eko Nur, Patihul Husni, & Fakultas Farmasi Universitas Padjajaran (2019). Review: Nanopartikel Kurkumin Solusi Masalah Kanker dan Antibakteri. 14. Dikutip pada 08 Maret 2025 dari https://doi.org/10.24198/jf.v14i2.10825.
Krausz, A. E., Adler, B. L., Cabral, V., Navati, M., Doerner, J., Charafeddine, R. A., ... & Friedman, A. J. (2015). Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine: Nanotechnology, Biology and Medicine, 11(1), 195-206.
Krausz, A. E., Adler, B. L., Cabral, V., Navati, M., Doerner, J., Charafeddine, R. A., ... & Friedman, A. J. (2015). Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine: Nanotechnology, Biology and Medicine, 11(1), 195-206.
Li, Q. Q., Kang, O. H., & Kwon, D. Y. (2021). Study on demethoxycurcumin as a promising approach to reverse methicillin-resistance of Staphylococcus aureus. International Journal of Molecular Sciences, 22(7), 3778.
Mahmudah Fitri, Lestari, & Sri Atun. (2017). Uji Aktivitas Antibakteri dari Ekstrak Etanol Temu Kunci (Boesenbergia Pandurata Roxb) terhadap Bakteri Streptococcus Mutans. Jurnal Penelitian Saintek, 22(1), 59. Dikutip pada 12 juni 2025 dari Https://Doi.Org/10.21831/Jps.V22i1.15380.
Marpaung Joy, Ivone Panjaitan. M. S., & Joshua H. L. Tobing (2024). Comparison of Effectiveness of Clove Flower, Cinnamon Bark, and Star Anise Extract on the Growth of Escherichia Coli Bacteria. Jurnal Biologi Tropis, 24(4), 1069–1076. Dikutip pada 14 juni 2025 dari Https://Doi.Org/10.29303/Jbt.V24i4.8068.
Meena, M., Zehra, A., Swapnil, P., Harish, Marwal, A., Yadav, G., & Sonigra, P. (2021). Endophytic nanotechnology: an approach to study scope and potential applications. Frontiers in Chemistry, 9, 613343.
Meinitasari Esa, Fitriana Yuliastuti, & Setiyo Budi Santoso. (2021). Hubungan Tingkat Pengetahuan terhadap Perilaku Penggunaan Antibiotik Masyarakat. Borobudur Pharmacy Review, 1(1), 7–14. Dikutip pada 26 Maret 2025 dari Https://Doi.Org/10.31603/Bphr.V1i1.4869.
Munir, Z., Banche, G., Cavallo, L., Mandras, N., Roana, J., Pertusio, R., ... & Guiot, C. (2022). Exploitation of the antibacterial properties of photoactivated curcumin as ‘green’tool for food preservation. International journal of molecular sciences, 23(5), 2600.
Novard M. Fardila Arie, Neti Suharti, &, Roslaili Rasyid (2019). Gambaran Bakteri Penyebab Infeksi pada Anak Berdasarkan Jenis Spesimen dan Pola Resistensinya Di Laboratorium RSUP Dr. M. Djamil Padang Tahun 2014-2016. Jurnal Kesehatan Andalas, 8(2S), 26. Dikutip pada 25 Maret 2025 dari Https://Doi.Org/10.25077/Jka.V8i2s.955.
Ortiz, C., Natale, P., Cueto, L., & Vicente, M. (2016). The keepers of the ring: regulators of FtsZ assembly. FEMS microbiology reviews, 40(1), 57-67.
Pandit, R. S., Gaikwad, S. C., Agarkar, G. A., Gade, A. K., & Rai, M. (2015). Curcumin nanoparticles: physico-chemical fabrication and its in vitro efficacy against human pathogens. 3 Biotech, 5(6), 991-997.
Perera, W. P. T. D., Dissanayake, R. K., Ranatunga, U. I., Hettiarachchi, N. M., Perera, K. D. C., Unagolla, J. M., ... & Pahalagedara, L. R. (2020). Curcumin loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications. RSC advances, 10(51), 30785-30795.
Pradana Theophani, Bagas Agung Endro Nugroho, & Ronny Martien (2023). Systematic Review: Nanopartikel dari Bahan dalam Obat Tradisional Indonesia. 19.Dikutip pada 10 juni 2025 dari DOI: https://doi.org/10.22146/farmaseutik.v19i4.91236.
Puspita Oktavia Eka, Tamara G. Ebtavanny., & Febyoke A. Fortunata. (2022). Studi Pengaruh Jenis Bahan Pengikat Sediaan Tablet Dispersi Solid Kunyit terhadap Profil Disolusi Ekstrak Kunyit (Curcuma Domestica). Pharmaceutical Journal of Indonesia, 8(1). Dikutip pada 11 juli 2025 dari Https://Doi.Org/10.21776/Ub.Pji.2022.008.01.10.
Rosalina Vivi, & Rina Nurmaulawati. (2024). Uji Aktivitas Antibakteri Ekstrak Herba Krokot (Portulaca Oleracea L) pada Bakteri Escherichia Coli. Pengembangan Ilmu dan Praktik Kesehatan, 3(3), 136–145. Dikutip pada 04 Mei 2025 Https://Doi.Org/10.56586/Pipk.V3i3.358.
Rosyada Ikvina, Inur Tivani, & Wilda Amananti. (2023). Uji Antibakteri Sabun Nanopartikel dengan Ag Ekstrak Daun Turi (Sesbania Grandiflora) dengan Metode Dilusi. Dikutip Pada 09 Mei 2025 dari https://doi.org/10.31764/justek.v6i4.20131.
Sandhiutami Nimade Made. Dwi. RS, Dew Khairani S., & Widyadari S. A. M. (2022). Evaluasi Keamanan dari Pengembangan Formula Nanopartikel Kurkumin pada Mencit dan Potensi Antioksidan In-Vitroevaluasi Keamanan dari Pengembangan Formula Nanopartikel Kurkumin pada Mencit dan Potensi Antioksidan In-Vitro. Jurnal Ilmu Kefarmasian Indonesia, 20(1), 63. Dikutip pada 18 Februari 2025 Https://Doi.Org/10.35814/Jifi.V20i1.1187.
Sardjiman Rahardjoputro, Santoso, J., Ernawati, & Widyaningrum N. R. (2024). Efektivitas Antibakteri Kurkumin dan Asam Tanat terhadap Staphylococcus Aureus dan Escherichia Coli In-Vitro: Antibacterial Effectiveness of Curcumin and Tannic Acid Against Staphylococcus Aureus and Escherichia Coli In-Vitro. Indonesian Journal of Pharmacy and Natural Product, 7(01), 32–40. Dikutip pada 23 April 2025 dari Https://Doi.Org/10.35473/Ijpnp.V7i01.2997.
Sekarini, A. A. A. D., Krissanti, I., & Syamsunarno, M. R. A. (2020). Efektivitas antibakteri senyawa kurkumin terhadap foodborne bacteria: tinjauan curcuma longa untuk mengatasi resistensi antibiotik. Jurnal Sains dan Kesehatan, 2(4), 538-547.
Sharifi, S., Fathi, N., Memar, M. Y., Hosseiniyan Khatibi, S. M., Khalilov, R., Negahdari, R., ... & Maleki Dizaj, S. (2020). Anti‐microbial activity of curcumin nanoformulations: New trends and future perspectives. Phytotherapy Research, 34(8), 1926-1946.
Sharifi, S.; Fathi, N.; Memar, M. Y.; Hosseiniyan Khatibi, S. M.; Khalilov, R.; Negahdari, R.; Zununi Vahed, S.; Maleki Dizaj, S. AntiMicrobial Activity of Curcumin Nanoformulations: New Trends and Future Perspectives. Phytother. Res. 2020, 34, 1926-1946.
Sharifian, P., Yaslianifard, S., Fallah, P., Aynesazi, S., Bakhtiyari, M., & Mohammadzadeh, M. (2020). Investigating the effect of nano-curcumin on the expression of biofilm regulatory genes of Pseudomonas aeruginosa. Infection and Drug Resistance, 2477-2484.
Sukertiasih Ni Kadek, Fitria Megawati Herleeyana Meriyani, & Dwi Arymbhy Sanjaya D. A. (2021). Studi Retrospektif Gambaran Resistensi Bakteri terhadap Antibiotik. Jurnal Ilmiah Medicamento, 7(2), 108–111. Dikutip pada 26 Mei 2025 dari Https://Doi.Org/10.36733/Medicamento.V7i2.2177.
Syakila Syalsa Reiza Putri & Saeful Amin. (2025). Kimia Medisinal dan Perjalanan Obat: dari Desain Molekul Hingga Monitoring Klinis. Jurnal Riset Ilmu Kesehatan Umum dan Farmasi (JRIKUF), 3(4), 84–97. Dikutip pada 18 juni 2025 dari Https://Doi.Org/10.57213/Jrikuf.V3i4.880
Tyagi, P., Singh, M., Kumari, H., Kumari, A., & Mukhopadhyay, K. (2015). Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PloS one, 10(3), e0121313.
Utami T. M., Wulandari W. T., & Tuslinah L. (2022). Karakteristik Nanopartikel Kurkumin dengan Penambahan Eudragit Menggunakan Metode Gelasi Ionik. 2. Dikutip pada 20 September 2025 dari DOI: https://doi.org/10.24198/jmei.v6i01.9366
License
Copyright (c) 2025 Fiona Rosslyn Tnunay, Donn Richard Ricky, Joshua H. L. Tobing

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
























