The Impact of Calcium Supplementation on Physiological Activity and Cherelle Wilt Reduction in Cocoa (Theobroma cacao L.)
Authors
Yovi AviantoDOI:
10.29303/jbt.v25i1.8292Published:
2025-01-21Issue:
Vol. 25 No. 1 (2025): Januari - MaretKeywords:
Calcium signaling, calmodulin, cell wall, cherelle wilt, cocoa.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Cocoa production in Indonesia has been challenged by declining productivity due to various factors, including cherelle wilt. Cherelle wilt, a condition characterized by the premature dropping of cocoa cherelle, is attributed to hormonal imbalances, nutrient deficiencies, and abiotic stresses. Calcium, as an essential nutrient, plays a crucial role in plant growth and can help mitigate the incidence of cherelle wilt. This study aimed to investigate the efficacy of calcium application in enhancing fruit set and reducing cherelle wilt in cocoa trees. The research was conducted from August 2020 to September 2022 at PT Pagilaran's Segayung Utara cocoa plantation, utilizing the RCC70 clone. Calcium chloride (CaCl2) was applied at rates of 0, 100, 200, 300, and 400 grams per tree per year. Results indicated that calcium fertilization improved the physiological performance of cocoa trees, as evidenced by enhanced chlorophyll fluorescence (Fv/Fm) and photosynthetic rate. These physiological improvements led to increased flower and fruit production, as well as a reduction in the incidence of cherelle wilt, particularly at application rates of 200-400 grams per tree per year. Consequently, overall yield and productivity were significantly increased at these rates.
References
Adet, L., Rozendaal, D. M. A., Tapi, A., Zuidema, P. A., Vaast, P., & Anten, N. P. R. (2024). Negative effects of water deficit on cocoa tree yield are partially mitigated by irrigation and potassium application. Agricultural Water Management, 296, 108789. https://doi.org/10.1016/j.agwat.2024.108789
Ajender, Thakur, B., & Chawla, W. (2019). Effect of calcium chloride on growth, fruit quality and production of apple. Journal of Pharmacognosy and Phytochemistry, 2019(1), 588–593.
Akladious, S. A., & Mohamed, H. I. (2018). Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper ( Capsicum annuum ) plants grown under salt stress. Scientia Horticulturae, 236, 244–250. https://doi.org/10.1016/j.scienta.2018.03.047
Aras, S., Keles, H., & Bozkurt, E. (2021). Physiological and histological responses of peach plants grafted onto different rootstocks under calcium deficiency conditions. Scientia Horticulturae, 281, 109967. https://doi.org/10.1016/j.scienta.2021.109967
Astegno, A., Bonza, M. C., Vallone, R., La Verde, V., D’Onofrio, M., Luoni, L., Molesini, B., & Dominici, P. (2017). Arabidopsis calmodulin-like protein CML36 is a calcium (Ca2+) sensor that interacts with the plasma membrane Ca2+-ATPase isoform ACA8 and stimulates its activity. Journal of Biological Chemistry, 292(36), 15049–15061. https://doi.org/10.1074/jbc.M117.787796
Astuti, Y. T. M., Kumala, D., Santosa, S., & Prawoto, A. A. (2010). Kajian Molekuler Layu Buah Muda Kakao (Theobroma cacao L.): Ekspresi TcPIN1 Like Gene. Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati, 15(3), 363–368.
Astuti, Y. T. M., Prawoto, A., & Dewi, K. (2011). Pengaruh Keberadaan Tunas, Aplikasi Naphthalene Acetic Acid dan Gibberellic Acid Terhadap Perkembangan Buah Muda Kakao. Pelita Perkebunan, 27(1), 11–23.
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060
Bhavishya, Bhat, R., Apshara, S. E., Pushpa, T. N., Prasad, D. S., Nayana, H., Thube, S. H., Pandian, R. T. P., & Ramesh, S. V. (2024). Genotypic variation in flowering, fruit set, and cherelle wilt, and their relationship with leaf nutrient status in cocoa (Theobroma cacao L.) grown in humid tropics of India. Innovations in Agriculture, 7, 1–5. https://doi.org/10.3897/ia.2024.124253
Coombs, J., Hall, D. O., Long, S. P., & Scurlock, J. M. O. (1985). Techniques in Bioproductivity and Photosynthesis. Elsevier. https://doi.org/10.1016/C2013-0-06092-6
Daymond, A. J., & Hadley, P. (2008). Differential effects of temperature on fruit development and bean quality of contrasting genotypes of cacao ( Theobroma cacao ). Annals of Applied Biology, 153(2), 175–185. https://doi.org/10.1111/j.1744-7348.2008.00246.x
Duan, S., Wu, Y., Zhang, C., Wang, L., Song, S., Ma, C., Zhang, C., Xu, W., Bondada, B., & Wang, S. (2020). Differential regulation of enzyme activities and physio-anatomical aspects of calcium nutrition in grapevine. Scientia Horticulturae, 272, 109423. https://doi.org/10.1016/j.scienta.2020.109423
Elkelish, A. A., Alnusaire, T. S., Soliman, M. H., Gowayed, S., Senousy, H. H., & Fahad, S. (2019). Calcium availability regulates antioxidant system, physio-biochemical activities and alleviates salinity stress mediated oxidative damage in soybean seedlings. Journal of Applied Botany and Food Quality, 258-266 Pages. https://doi.org/10.5073/JABFQ.2019.092.036
Esche, L., Schneider, M., Milz, J., & Armengot, L. (2023). The role of shade tree pruning in cocoa agroforestry systems: Agronomic and economic benefits. Agroforestry Systems, 97(2), 175–185. https://doi.org/10.1007/s10457-022-00796-x
Eticha, D., Kwast, A., Chiachia, T. R. D. S., Horowitz, N., & Stützel, H. (2017). Calcium nutrition of orange and its impact on growth, nutrient uptake and leaf cell Wall. Citrus Research & Technology, 38(1). https://doi.org/10.4322/crt.ICC096
Fungenzi, T., Sakrabani, R., Burgess, P. J., Lambert, S., & McMahon, P. (2021). Medium-term effect of fertilizer, compost, and dolomite on cocoa soil and productivity in Sulawesi, Indonesia. Experimental Agriculture, 57(3), 185–202. https://doi.org/10.1017/S0014479721000132
Galeriani, T. M., Neves, G. O., Santos Ferreira, J. H., Oliveira, R. N., Oliveira, S. L., Calonego, J. C., & Crusciol, C. A. C. (2022). Calcium and Boron Fertilization Improves Soybean Photosynthetic Efficiency and Grain Yield. Plants, 11(21), 2937. https://doi.org/10.3390/plants11212937
Gao, Q., Xiong, T., Li, X., Chen, W., & Zhu, X. (2019). Calcium and calcium sensors in fruit development and ripening. Scientia Horticulturae, 253, 412–421. https://doi.org/10.1016/j.scienta.2019.04.069
Goltsev, V. N., Kalaji, H. M., Paunov, M., Bąba, W., Horaczek, T., Mojski, J., Kociel, H., & Allakhverdiev, S. I. (2016). Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russian Journal of Plant Physiology, 63(6), 869–893. https://doi.org/10.1134/S1021443716050058
Hasanuddin, E. S. D., Prapto Yudono, Eka Tarwaca Susila Putra, & Benito Heru Purwanto. (2019). Physiological, biochemical activities of cherelle wilt on three cocoa clones (Theobroma cacao) under two levels of soil fertilities. Biodiversitas Journal of Biological Diversity, 21(1). https://doi.org/10.13057/biodiv/d210124
He, L., Yu, L., Li, B., Du, N., & Guo, S. (2018). The effect of exogenous calcium on cucumber fruit quality, photosynthesis, chlorophyll fluorescence, and fast chlorophyll fluorescence during the fruiting period under hypoxic stress. BMC Plant Biology, 18(1), 180. https://doi.org/10.1186/s12870-018-1393-3
Hu, W., Tian, S. B., Di, Q., Duan, S. H., & Dai, K. (2018). Effects of exogenous calcium on mesophyll cell ultrastructure, gas exchange, and photosystem II in tobacco (Nicotiana tabacum Linn.) under drought stress. Photosynthetica, 56(4), 1204–1211. https://doi.org/10.1007/s11099-018-0822-8
Ifuku, K., & Noguchi, T. (2016). Structural Coupling of Extrinsic Proteins with the Oxygen-Evolving Center in Photosystem II. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00084
Islam, Md. M., Jahan, K., Sen, A., Urmi, T. A., Haque, M. M., Ali, H. M., Siddiqui, M. H., & Murata, Y. (2023). Exogenous Application of Calcium Ameliorates Salinity Stress Tolerance of Tomato (Solanum lycopersicum L.) and Enhances Fruit Quality. Antioxidants, 12(3), 558. https://doi.org/10.3390/antiox12030558
Kolupaev, Yu. E., Firsova, E. N., Yastreb, T. O., & Lugovaya, A. A. (2017). The Participation of calcium ions and reactive oxygen species in the induction of antioxidant enzymes and heat resistance in plant cells by hydrogen sulfide donor. Applied Biochemistry and Microbiology, 53(5), 573–579. https://doi.org/10.1134/S0003683817050088
Krylova, V. V., Zartdinova, R. F., & Izmailov, S. F. (2023). pH and pCa—Factors Controlling the Action of Calmodulin on Ca2+-ATPase in the Symbiosome Membrane from Broad Bean Root Nodules. Russian Journal of Plant Physiology, 70(4), 77. https://doi.org/10.1134/S1021443722602233
La, V. H., Lee, B.-R., Islam, Md. T., Mamun, Md. A., Park, S.-H., Bae, D.-W., & Kim, T.-H. (2020). Characterization of Glutamate-Mediated Hormonal Regulatory Pathway of the Drought Responses in Relation to Proline Metabolism in Brassica napus L. Plants, 9(4), 512. https://doi.org/10.3390/plants9040512
Lubis, S. T., Putra, E. T. S., & Kurniasih, B. (2022). Anatomical characteristics of cocoa plant roots as affected by the levels of calcium fertilization. Ilmu Pertanian (Agricultural Science), 7(2), 68. https://doi.org/10.22146/ipas.69842
Malyukova, L., Pritula, Z., Kozlova, N., Velikiy, A., Rogozhina, E., Kerimzade, V., & Samarina, L. (2021). Effects of calcium-containing natural fertilizer on Camellia sinensis (L.) Kuntze. Bangladesh Journal of Botany, 50(1), 179–187. https://doi.org/10.3329/bjb.v50i1.52686
Medan, R. A. (2020). Effect of foliar application of potassium and calcium on vegetative growth, yield, and fruit quality of “Royal” apricot trees. Plant Cell Biotechnology and Molecular Biology, 21(34), 106–112.
Melnick, R. L. (2016). Cherelle Wilt of Cacao: A Physiological Condition. In B. A. Bailey & L. W. Meinhardt (Eds.), Cacao Diseases (pp. 483–499). Springer International Publishing. https://doi.org/10.1007/978-3-319-24789-2_15
Mulia, S., Mcmahon, P. J., Purwantara, A., Bin Purung, H., Djufry, F., Lambert, S., Keane, P. J., & Guest, D. I. (2019). Effect of organic and inorganic amendments on productivity of cocoa on a marginal soil in Sulawesi, Indonesia. Experimental Agriculture, 55(1), 1–20. https://doi.org/10.1017/S0014479717000527
Naeem, M., Naeem, M. S., Ahmad, R., Ihsan, M. Z., Ashraf, M. Y., Hussain, Y., & Fahad, S. (2018). Foliar calcium spray confers drought stress tolerance in maize via modulation of plant growth, water relations, proline content and hydrogen peroxide activity. Archives of Agronomy and Soil Science, 64(1), 116–131. https://doi.org/10.1080/03650340.2017.1327713
Pourahmadi, E., Mohamadkhani, A., Roshandel, P., & Momenyan, S. (2019). Evaluating Foliar Application of Calcium Nitrate, Calcium Chloride and Boric Acid on Physiological Disorders of ‘Kaleh—Ghoochi’ Pistachio. Journal of Nuts, 10(2). https://doi.org/10.22034/jon.2019.570460.1049
Praseptiangga, D., M. Guevara Zambrano, J., Pitara Sanjaya, A., Rahadian Aji Muhammad, D., 1 Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan, Jebres 57126, Surakarta, Indonesia, & 2 Centre for Food and Microbial Technology, Department of Microbial and Molecular System, KU Lueven, Kasteelpark Arenberg 22-box 2463 Leuven 3001 Belgium. (2020). Challenges in the development of the cocoa and chocolate industry in Indonesia: A case study in Madiun, East Java. AIMS Agriculture and Food, 5(4), 920–937. https://doi.org/10.3934/agrfood.2020.4.920
Pratt, H. K., & Mendoza Jr., B. M. (1979). Colorimetric Determination of Carbon Dioxide for Respiration Studies. HortScience, 14(2), 175–176.
Ranty, B., Aldon, D., Cotelle, V., Galaud, J.-P., Thuleau, P., & Mazars, C. (2016). Calcium Sensors as Key Hubs in Plant Responses to Biotic and Abiotic Stresses. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00327
Roy, P. R., Tahjib-Ul-Arif, Md., Polash, M. A. S., Hossen, Md. Z., & Hossain, M. A. (2019). Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice (Oryza sativa L.). Physiology and Molecular Biology of Plants, 25(3), 611–624. https://doi.org/10.1007/s12298-019-00654-8
Santoso, D., & Rahmawan, A. (2016). Teknik aplikasi dan efektivitas formula VGR untuk penurunan tingkat layu pentil kakao Application techniques and effectivity of VGR formulas to reduce cherelle wilt in cacao. E-Journal Menara Perkebunan, 70(1). https://doi.org/10.22302/iribb.jur.mp.v70i1.131
Shahid, M. O., Muhmood, A., Ihtisham, M., Ur Rahman, M., Amjad, N., Sajid, M., Riaz, K., & Ali, A. (2020). Fruit yield and quality of “Florida King” peaches subjected to foliar calcium chloride sprays at different growth stages. Acta Scientiarum Polonorum Hortorum Cultus, 19(1), 131–139. https://doi.org/10.24326/asphc.2020.1.12
Siddiqui, M. H., Alamri, S., Nasir Khan, M., Corpas, F. J., Al-Amri, A. A., Alsubaie, Q. D., Ali, H. M., Kalaji, H. M., & Ahmad, P. (2020). Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. Journal of Hazardous Materials, 398, 122882. https://doi.org/10.1016/j.jhazmat.2020.122882
Sitko, K., Gieroń, Ż., Szopiński, M., Zieleźnik-Rusinowska, P., Rusinowski, S., Pogrzeba, M., Daszkowska-Golec, A., Kalaji, H. M., & Małkowski, E. (2019). Influence of short-term macronutrient deprivation in maize on photosynthetic characteristics, transpiration and pigment content. Scientific Reports, 9(1), 14181. https://doi.org/10.1038/s41598-019-50579-1
Tai, L., Li, B.-B., Nie, X.-M., Zhang, P.-P., Hu, C.-H., Zhang, L., Liu, W.-T., Li, W.-Q., & Chen, K.-M. (2019). Calmodulin Is the Fundamental Regulator of NADK-Mediated NAD Signaling in Plants. Frontiers in Plant Science, 10, 681. https://doi.org/10.3389/fpls.2019.00681
Thor, K. (2019). Calcium—Nutrient and Messenger. Frontiers in Plant Science, 10, 440. https://doi.org/10.3389/fpls.2019.00440
Van Vliet, J. A., & Giller, K. E. (2017). Mineral Nutrition of Cocoa. In Advances in Agronomy (Vol. 141, pp. 185–270). Elsevier. https://doi.org/10.1016/bs.agron.2016.10.017
Yamano, T., Toyokawa, C., & Fukuzawa, H. (2018). High-resolution suborganellar localization of Ca2+-binding protein CAS, a novel regulator of CO2-concentrating mechanism. Protoplasma, 255(4), 1015–1022. https://doi.org/10.1007/s00709-018-1208-2
Zhang, Z., Wu, P., Zhang, W., Yang, Z., Liu, H., Ahammed, G. J., & Cui, J. (2020). Calcium is involved in exogenous NO-induced enhancement of photosynthesis in cucumber (Cucumis sativus L.) seedlings under low temperature. Scientia Horticulturae, 261, 108953. https://doi.org/10.1016/j.scienta.2019.108953
License
Copyright (c) 2025 Yovi Avianto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.