Determination of Radiation Dose Rate in Radiology Installations Using Raysafe X2 Surveymeter

Authors

Susi Andriati , Feriska Handayani Irka , Nini Firmawati , Ade Wahyuni , Ramacos Fardela

DOI:

10.29303/jpft.v10i2.7841

Published:

2024-12-30

Issue:

Vol. 10 No. 2 (2024): July - December

Keywords:

Ct-Scan, Dose rate, mammograpy, Raysafe X2, X-ray

Articles

Downloads

How to Cite

Andriati, S., Irka, F. H., Firmawati, N., Wahyuni, A., & Fardela, R. (2024). Determination of Radiation Dose Rate in Radiology Installations Using Raysafe X2 Surveymeter. Jurnal Pendidikan Fisika Dan Teknologi, 10(2), 458–470. https://doi.org/10.29303/jpft.v10i2.7841

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Based on the study of radiation dose rates in the Radiology Installation of Pariaman Regional Hospital using a Raysafe surveymeter, it can be reported that the radiation dose rate in the CT-Scan room is measured at (0.30-1.27) μSv/hour. In the conventional X-ray room, the radiation dose rate is found to be between (0.2-0.5) μSv/hour, while in the mammography room, the dose rate ranges from (0.00-0.40) μSv/hour. These findings indicate that the highest radiation exposure occurs in the CT-Scan room, which aligns with the higher complexity and intensity of the imaging procedures performed there. The relatively low dose rates in the conventional X-ray and mammography rooms suggest effective radiation shielding and adherence to safety protocols. Continuous monitoring of radiation levels is essential to ensure they remain within safe limits for both patients and medical staff. Furthermore, this data can be instrumental in optimizing exposure parameters, helping to minimize unnecessary radiation exposure while maintaining diagnostic quality. Implementing regular training for staff on radiation safety practices is also critical, as it enhances awareness and adherence to established protocols. Overall, these measures contribute to a safer radiology environment for all involved.

References

Abuelhia, E., & Alghamdi, A. (2020). Evaluation Of Arising Exposure Of Ionizing Radiation From Computed Tomography And The Associated Health Concerns. Journal of Radiation Research and Applied Sciences, 13(1), 295–300. https://doi.org/10.1080/16878507.2020.1728962

Alemayehu, T. G., Bogale, G. G., & Bazie, G. W. (2023). Occupational radiation exposure dose and associated factors among radiology personnel in Eastern Amhara, Ethiopia. PLoS ONE, 18(5 May), 1–14. https://doi.org/10.1371/journal.pone.0286400

Amis, E. S., Butler, P. F., Applegate, K. E., Birnbaum, S. B., Brateman, L. F., Hevezi, J. M., Mettler, F. A., Morin, R. L., Pentecost, M. J., Smith, G. G., Strauss, K. J., & Zeman, R. K. (2007). American College of Radiology White Paper on Radiation Dose in Medicine. Journal of the American College of Radiology, 4(5), 272–284. https://doi.org/10.1016/j.jacr.2007.03.002

Baker, J. J., & Terenzio, A. (2021). Understanding the relationship between time and dose in radiation safety: Implications for practice. Journal of Radiology Nursing, 40(1), 46–52.

BAPETEN. (2013). Peraturan Kepala Badan Pengawas Tenaga Nuklir Nomor 4 Tahun 2013 tentang Proteksi dan Keselamatan Radiasi Dalam Pemanfaatan Tenaga Nuklir - JDIH-BAPETEN (in Indonesian). Perka BAPETEN.

Baudin, C., Bernier, M. O., Klokov, D., & Andreassi, M. G. (2021). Biomarkers of genotoxicity in medical workers exposed to low-dose ionizing radiation: Systematic review and meta-analyses. International Journal of Molecular Sciences, 22(14). https://doi.org/10.3390/ijms22147504

Behling, R. (2016). MODERN DIAGNOSTIC X-RAY SOURCES.

Bolognese-Milsztajn, T., Ginjaume, M., Luszik-Bhadra, M., Vanhavere, F., Wahl, W., & Weeks, A. (2004). Active personal dosemeters for individual monitoring and other new developments. Radiation Protection Dosimetry, 112(1 SPEC. ISS.), 141–168. https://doi.org/10.1093/rpd/nch286

Brown, N., & Jones, L. (2013). Knowledge of medical imaging radiation dose and risk among doctors. Journal of Medical Imaging and Radiation Oncology, 57(1), 8–14. https://doi.org/10.1111/j.1754-9485.2012.02469.x

Buch, K., & Wenzel, S. (2017). Influence of exposure factors on the radiation dose in pediatric X-ray examinations. European Journal of Radiology, 86, 93–98.

Chinangwa, G., Amoako, J. K., & Fletcher, J. J. (2017). Radiation dose assessment for occupationally exposed workers in Malawi. Malawi Medical Journal, 29(3), 254–258. https://doi.org/10.4314/mmj.v29i3.5

Dhanesar, S. K., Rojas, C. E., & Wolff, M. S. (2017). Evaluation of shielding materials for diagnostic radiology: An experimental and computational study. Radiation Protection Dosimetry, 175(4), 479–486. https://doi.org/https://doi.org/10.1093/rpd/ncx174

Dja’afar, T., Saharudin, S., Bungawati, A., Maryam, M., & Syam, D. M. (2022). Perilaku Petugas Linen di Rumah Sakit Umum Daerah (RSUD) Anuntaloko Kabupaten Parigi Moutong. Banua: Jurnal Kesehatan Lingkungan, 2(1), 7–15. https://doi.org/10.33860/bjkl.v2i1.611

Fardela, R., Milvita, D., Rasyada, L. A., Almuhayar, M., & Diyona, F. (2023). Radiation Dose Evaluation for Radiotherapy Workers at Unand Hospital Using Four-Element Thermoluminescence Dosimetry. Ilmiah Pendidikan Fisika Al-Biruni, 12(December), 143–151. https://doi.org/10.24042/jipfalbiruni.v12i2.18101

Fardela, R., Suparta, G. B., & Ashari, A. (2020). The Work Environment For The Health Workers : An Experimental. Periodico Tche Quimica, 17. https://doi.org/10.52571/PTQ.v17.n36.2020.677

Fardela, R., Suparta, G. B., Ashari, A., & Triyana, K. (2021). Experimental Characterization of Dosimeter Based on a Wireless Sensor Network for A Radiation Protection Program. International Journal on Advanced Science, Engineering and Information Technology, 11(4), 1468–1473. https://doi.org/10.18517/ijaseit.11.4.11875

Guan, Y., Wu, Y., & Liu, J. (2019). Occupational radiation exposure in medical staff in China: A review of current data and measures. Journal of Radiation Research, 60(2), 265–276.

Hariyanto, D., & Sidik, P. (2019). Studi Intensitas Radiasi Menggunakan Survey Meter Berbasis Tabung Geiger M4011 dan Mikrokontroler Arduino Uno. Prosiding Simposium Nasional Inovasi Dan Pembelajaran Sains, 7(1), 192–198.

Hidayatullah, R. (2017). Dampak Tingkat Radiasi Pada Tubuh Manusia. Jurnal Mutiara Elektromedik, 1(1), 16–23.

Hricak, H., Brenner, D. J., Adelstein, S. J., Frush, D. P., Hall, E. J., Howell, R. W., McCollough, C. H., Mettler, F. A., Pearce, M. S., Suleiman, O. H., Thrall, J. H., & Wagner, L. K. (2011). Managing radiation use in medical imaging: A multifaceted challenge. Radiology, 258(3), 889–905. https://doi.org/10.1148/radiol.10101157

IAEA. (2002). Radiological Protection for Medical Exposure to Ionizing Radiation Safety Guide. Safety Standards Series No RS-G-1.5, 76.

IAEA. (2014). Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. IAEA Safety Standards Series No. GSR Part 3.

International Commission on Radiological Protection. (2012). Occupational Radiation Protection. In ICRP Publication.

International Commission on Radiological Protection. (2019). Radiological Protection in Medicine. ICRP Publication.

Irsal, M., Syuhada, F. A., Ananda, Y. P., Putra, A. G. P., Syahputera, M. R., & Wibowo, S. (2020). Measurement of Radiation Exposure in Facilities for Radiology Diagnostic At the Covid-19 Emergency Hospital in Wisma Atlet Jakarta. Journal of Vocational Health Studies, 4(2), 55. https://doi.org/10.20473/jvhs.v4.i2.2020.55-61

Johary, Y. H., Albarakati, S., AlSohaim, A., Aamry, A., Aamri, H., Tamam, N., Salah, H., Tahir, D., Alkhorayef, M., Sulieman, A., & Bradley, D. (2023). Evaluation occupationally radiation exposure during diagnostic imaging examinations. Applied Radiation and Isotopes, 193(December 2022), 110648. https://doi.org/10.1016/j.apradiso.2023.110648

Kepala Badan Pengawas Tenaga Nuklir Republik Indonesia. (2020). Peraturan Badan Pengawas Tenaga Nuklir Republik Indonesia Nomor 4 Tahun 2020 Tentang Keselamatan Radiasi Pada Penggunaan Pesawat Sinar-X Dalam Radiologi Diagnostik Dan Intervensional. Peraturan Badan Pengawas Tenaga Nuklir Republik Indonesia, 1–52. https://jdih.bapeten.go.id/unggah/dokumen/peraturan/1028-full.pdf

Kiragga, F., Kisolo, A., Nakatudde, R., & History, M. (2018). Effectiveness of the Shielding Mechanism in Rooms Housing X-Ray Diagnostic Equipments ( a Case Study of Mulago Hospital , Uganda ). International Journal of Innovative Research in Advanced Engineering, 5(02), 2014–2019. https://doi.org/10.26562/IJIRAE.2018.FBAE10081

Kumar, A., & Bansal, A. (2020). Optimization of X-ray exposure factors in radiographic procedures: A review. Journal of Medical Imaging and Radiation Sciences, 51(1), 22–28.

Lee, C. I., Haims, A. H., Monico, E. P., Brink, J. A., & Forman, H. P. (2004). Diagnostic CT Scans: Assessment of Patient, Physician, and Radiologist Awareness of Radiation Dose and Possible Risks. Radiology, 231(2), 393–398. https://doi.org/10.1148/radiol.2312030767

Mettler, F. A., & Guiberteau, M. J. (2012). Essentials of Nuclear Medicine Imaging. In Elsevier Health Sciences. https://doi.org/10.1016/b978-1-4557-0104-9.01001-5

Mettler, F. A., & Guiberteau, M. J. (2018). Essentials of Nuclear Medicine and Molecular Imaging. Elsevier Health Sciences.

Mitelman, F., Johansson, B., & Mertens, F. (2007). The impact of translocations and gene fusions on cancer causation. Nature Reviews Cancer, 7(4), 233–245. https://doi.org/10.1038/nrc2091

Mohammad, Y. K., & Najam, R. S. (2019). Radiation Dose Measurement of X-Ray Diagnostic Radiology in Some Dentistry by Using Film Badge in Salah-Din / Iraq. Tikrit Journal for Dental Sciences, 7(2), 69–73.

Nash, C., & Nair, S. (2020). The effect of distance on radiation exposure to staff during computed tomography procedures: A pilot study. Radiation Protection Dosimetry, 189(1), 37–43.

Paolicchi, F., Miniati, F., Bastiani, L., Faggioni, L., Ciaramella, A., Creonti, I., Sottocornola, C., Dionisi, C., & Caramella, D. (2016). Assessment of radiation protection awareness and knowledge about radiological examination doses among Italian radiographers. Insights into Imaging, 7(2). https://doi.org/10.1007/s13244-015-0445-6

Putri, A., Zurma, R., Munir, R., & Putri, E. R. (2023). Analysis of Radiation Exposure Level on Linen and Other Objects in Patient Rooms at Nuclear Medicine Installation. Atom Indonesia, 49(3), 185–192. https://doi.org/10.55981/AIJ.2023.1291

Rahman, F. U. A., Nurrachman, A. S., Astuti, E. R., Epsilawati, L., & Azhari, A. (2020). Paradigma baru konsep proteksi radiasi dalam pemeriksaan radiologi kedokteran gigi: dari ALARA menjadi ALADAIP. Jurnal Radiologi Dentomaksilofasial Indonesia (JRDI), 4(2), 27. https://doi.org/10.32793/jrdi.v4i2.555

Rochmayanti, D., Daryati, S., & Kartikasari, Y. (2018). Profil Paparan Radiasi Instalasi Radiologi Dalam Upaya Mendukung Program Proteksi Pada Rumah Sakit/Laboratorium Klinik Radiologi Di Wilayah Kota Semarang Radiation Exposure Profile in Radiological Department To Supporting Protection Programs in Hospitals. JImeD, 5(1), 20–24. http://repository.poltekkessmg.ac.id/repository/ALIVVIYA.pdf%0Ahttp://ejournal.poltekkessmg.ac.id/ojs/index.php/jimed/article/view/3999

Savage, C., Seale IV, T. M., Shaw, C. J., Angela, B. P., Marichal, D., & Rees, C. R. (2013). Evaluation of a Suspended Personal Radiation Protection System vs. Conventional Apron and Shields in Clinical Interventional Procedures. Open Journal of Radiology, 03(03), 143–151. https://doi.org/10.4236/ojrad.2013.33024

Seeram, E. (2018). Digital Imaging for Health Care: Methods and Applications. Springer.

Yusoff, N. M., Salleh, N. M., & Hamid, N. A. (2020). Evaluation of novel composite shielding materials for radiation protection. Radiation Physics and Chemistry, 168.

Zhou, Z., Xie, X., & Liu, J. (2018). Assessment of occupational radiation exposure for medical staff during interventional procedures: A systematic review. Radiation Protection Dosimetry, 182(4), 470–478.

Zira, J., Zikirullahi, U., Garba, I., Sidi, M., Umar, M., & Bature, S. (2020). Assessment of Radiation Leakage from Diagnostic Rooms of Radiology Department of a Teaching Hospital in Kano, Northwestern Nigeria. Journal of Nuclear Technology in Applied Science, 8(1), 135–143. https://doi.org/10.21608/jntas.2020.23942.1018

Author Biographies

Susi Andriati, University of Andalas

Department of Physics

Feriska Handayani Irka, University of Andalas

Department of Physics

Nini Firmawati, University of Andalas

Department of Physics

Ade Wahyuni, Pariaman Regional General Hospital

Medical Physicist

Ramacos Fardela, University of Andalas

Department of Physics

License

Copyright (c) 2024 Susi Andriati, Feriska Handayani Irka, Nini Firmawati, Ade Wahyuni, Ramacos Fardela

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Authors who publish with Jurnal Pendidikan Fisika dan Teknologi (JPFT) agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Pendidikan Fisika dan Teknologi (JPFT).
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).