Organoid Culture Applications: Mini Systematic Review
Authors
Rilwan Efendi , Puti Khairunnajwa Amar , Resti Rahayu , Putra Santoso , Zozy Aneloi Noli , Rita MalizaDOI:
10.29303/jbt.v23i4.5387Published:
2023-10-05Issue:
Vol. 23 No. 4 (2023): October - DecemberKeywords:
Application, medicinal, organoid culture, stem cells.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Recent scientific developments in the stem cell field have made it possible to create complex organoids, or structures that resemble complete organs, in vitro. In the majority of these methods, stem cells produced from stem cells or tissue progenitors are allowed to self-organize into three-dimensional (3D) structures using culture systems in three dimensions. The purpose of this study is to ascertain the use of organoid culture in the area of health. This kind of study employs the literature review methodology. The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) criteria are referenced throughout the stages of the literature review performed in this study. The four processes that make up this level are identification, screening, eligibility, and acceptance. These discoveries showing that human stem cells and patient-derived pluripotent stem cells can be used to generate organoids open up a wide range of opportunities for modeling and disease development, toxicological research and medication discovery, and the field of regenerative medicine. Here, we discuss some of the most significant recent advancements in 3D human organoid production as well as the field's historical advancements. Finally, we discuss present restrictions and provide illustrations of how organoid technology may be used in the healthcare industry.
References
Akkerman, N., & Defize, L. H. (2017). Dawn of the organoid era: 3D tissue and organ cultures revolutionize the study of development, disease, and regeneration. Bioessays, 39(4), 1600244. DOI: 10.1002/bies.201600244.
Artegiani B., and Clevers H. (2018). Use and application of 3D-organoid technology. Human Molecular Genetics, 27(R2): 99-107. DOI: 10.1093/hmg/ddy187
Assawachananont, J., Mandai, M., Okamoto, S., Yamada, C., Eiraku, M., Yonemura, S., ... & Takahashi, M. (2014). Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem cell reports, 2(5), 662-674. DOI: 10.1016/j.stemcr.2014.03.011
Bershteyn, M., Nowakowski, T. J., Pollen, A. A., Di Lullo, E., Nene, A., Wynshaw-Boris, A., & Kriegstein, A. R. (2017). Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell stem cell, 20(4), 435-449. DOI: 10.1016/j.stem.2016.12.007
Bredenoord, A. L., Clevers, H., & Knoblich, J. A. (2017). Human tissues in a dish: the research and ethical implications of organoid technology. Science, 355(6322), eaaf9414. DOI: 10.1126/science.aaf9414
Clevers, Hans. (2016). Modeling Development and Disease with Organoids. Cell, 165(7): 1586-1597. DOI: 10.1016/j.cell.2016.05.082
Dekkers, J. F., Wiegerinck, C. L., De Jonge, H. R., Bronsveld, I., Janssens, H. M., De Winter-de Groot, K. M., ... & Beekman, J. M. (2013). A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nature medicine, 19(7), 939-945. DOI: 10.1038/nm.3201
Dijkstra, K. K., Cattaneo, C. M., Weeber, F., Chalabi, M., van de Haar, J., Fanchi, L. F., ... & Voest, E. E. (2018). Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell, 174(6), 1586-1598. doi: 10.1016/j.cell.2018.07.009
Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, Sato T, Hamer K, Sasaki N, Finegold MJ, Haft A, Vries RG, Grompe M, Clevers H. (2013). In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature, 494:247–250. DOI: 10.1038/nature11826
Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F, Verstegen MM, Ellis E, van Wenum M, Fuchs SA, de Ligt J, van de Wetering M, Sasaki N, Boers SJ, Kemperman H, de Jonge J, Ijzermans JN, Nieuwenhuis EE, Hoekstra R, Strom S, Vries RR, van der Laan LJ, Cuppen E, Clevers H. (2015). Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell, 160(1-2):299–312. DOI: 10.1016/j.cell.2014.11.050
Jin, Y., Kim, J., Lee, J. S., Min, S., Kim, S., Ahn, D. H., ... & Cho, S. W. (2018). Drug Screening: Vascularized Liver Organoids Generated Using Induced Hepatic Tissue and Dynamic Liver‐Specific Microenvironment as a Drug Testing Platform (Adv. Funct. Mater. 37/2018). Advanced Functional Materials, 28(37), 1870266. DOI: 10.1002/adfm.201801954
Jo, J., Xiao, Y., Sun, A. X., Cukuroglu, E., Tran, H. D., Göke, J., ... & Ng, H. H. (2016). Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell stem cell, 19(2), 248-257. DOI: 10.1016/j.stem.2016.07.005
Khetani, S. R. (2021). Pluripotent stem cell-derived human liver organoids enter the realm of high-throughput drug screening. Gastroenterology, 160(3), 653-655. DOI: 10.1053/j.gastro.2020.12.005
Kim J., Koo B.k., & Knoblich J.A. (2020). Human organoids: model systems for human biology and medicine. Nature Molecular Cell Biology, 21: 571-584. DOI: 10.1038/s41580-020-0259-3
McCracken, K. W., Catá, E. M., Crawford, C. M., Sinagoga, K. L., Schumacher, M., Rockich, B. E., ... & Wells, J. M. (2014). Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 516(7531), 400-404. DOI: 10.1038/nature13863
Neal, J. T., Li, X., Zhu, J., Giangarra, V., Grzeskowiak, C. L., Ju, J., ... & Kuo, C. J. (2018). Organoid modeling of the tumor immune microenvironment. Cell, 175(7), 1972-1988. DOI: 10.1016/j.cell.2018.11.021
Olgasi, C., Cucci, A., & Follenzi, A. (2020). iPSC-derived liver organoids: a journey from drug screening, to disease modeling, arriving to regenerative medicine. International journal of molecular sciences, 21(17), 6215. DOI: 10.3390/ijms21176215
Schwank, G., Koo, B. K., Sasselli, V., Dekkers, J. F., Heo, I., Demircan, T., ... & Clevers, H. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell stem cell, 13(6), 653-658. DOI: 10.1016/j.stem.2013.11.002
Seino, T., Kawasaki, S., Shimokawa, M., Tamagawa, H., Toshimitsu, K., Fujii, M., ... & Sato, T. (2018). Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell stem cell, 22(3), 454-467. DOI: 10.1016/j.stem.2017.12.009
Silvestri, V. L., Henriet, E., Linville, R. M., Wong, A. D., Searson, P. C., & Ewald, A. J. (2020). A Tissue-Engineered 3D Microvessel Model Reveals the Dynamics of Mosaic Vessel Formation in Breast CancerDynamics of Tumor–Vessel Interactions in a 3D Vessel Model. Cancer Research, 80(19), 4288-4301. DOI: 10.1158/0008-5472.CAN-19-1564
Takasato, M., Er, P. X., Becroft, M., Vanslambrouck, J. M., Stanley, E. G., Elefanty, A. G., & Little, M. H. (2014). Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nature cell biology, 16(1), 118-126. DOI: 10.1038/ncb2894
Takebe, T., Sekine, K., Enomura, M., Koike, H., Kimura, M., Ogaeri, T., ... & Taniguchi, H. (2013). Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 499(7459), 481-484. DOI: 10.1038/nature12271
Takebe, T., Zhang, R. R., Koike, H., Kimura, M., Yoshizawa, E., Enomura, M., ... & Taniguchi, H. (2014). Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature protocols, 9(2), 396-409. DOI: 10.1038/nprot.2014.020
Turner, D. A., Girgin, M., Alonso-Crisostomo, L., Trivedi, V., Baillie-Johnson, P., Glodowski, C. R., ... & Arias, A. M. (2017). Anteroposterior polarity and elongation in the absence of extra-embryonic tissues and of spatially localised signalling in gastruloids: mammalian embryonic organoids. Development, 144(21), 3894-3906. DOI: 10.1242/dev.150391
Watson, C. L., Mahe, M. M., Múnera, J., Howell, J. C., Sundaram, N., Poling, H. M., ... & Helmrath, M. A. (2014). An in vivo model of human small intestine using pluripotent stem cells. Nature medicine, 20(11), 1310-1314. DOI: 10.1038/nm.3737
Wells, J. M., & Spence, J. R. (2014). How to make an intestine. Development, 141(4), 752-760. DOI: 10.1242/dev.097386
Wörsdörfer, P., Dalda, N., Kern, A., Krüger, S., Wagner, N., Kwok, C. K., ... & Ergün, S. (2019). Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells. Scientific reports, 9(1), 1-13. DOI: 10.1038/s41598-019-52204-7
Zhang, D., Li, L., Jiang, H., Li, Q., Wang-Gillam, A., Yu, J., ... & Lim, K. H. (2018). Tumor–Stroma IL1β-IRAK4 Feedforward Circuitry Drives Tumor Fibrosis, Chemoresistance, and Poor Prognosis in Pancreatic CancerTumor-Stromal IRAK4 Drives Pancreatic Cancer. Cancer research, 78(7), 1700-1712. DOI: 10.1158/0008-5472.CAN-17-1366
License
Copyright (c) 2023 Rilwan Efendi, Puti Khairunnajwa Amar, Resti Rahayu, Putra Santoso, Zozy Aneloi Noli, Rita Maliza
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.