Potential of Mesenchymal Stem Cells (MSCs) for Various Disease Therapy: Systematic Review
Authors
Annisa Aulia , Dessy Rismayani , Tita Nopiyanti , Zozy Aneloi Noli , Rita MalizaDOI:
10.29303/jbt.v24i4.7006Published:
2024-10-07Issue:
Vol. 24 No. 4 (2024): Oktober - DesemberKeywords:
Disease, Mesenchymal stem cells (MSCs), therapy.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Mesenchymal stem cells (MSCs) are a type of multipotent stem cells that can be found in various tissues of the body, possessing good regenerative qualities and promising immunomodulatory abilities for therapy in various medical conditions. MSCs can be obtained from bone marrow, umbilical cord, adipose tissue, and Warthon's jelly. This study aims to present a systematic review of the use of mesenchymal stem cells in disease therapy, by evaluating the latest evidence regarding their efficacy and safety in various therapies. This review uses literature review methods from international data bases such as PubMed and Google Scholar. The total number of articles obtained from the database was 49 articles. These articles were then filtered using inclusion and exclusion criteria, resulting in 22 articles for this systematic review. The research findings indicate that MSCs therapy has been used for the treatment of liver fibrosis, diabetes mellitus, spinal cord injury, and COVID-19. In MSCs therapy, mechanisms involved paracrine effects (MSCs produce cytokines, growth factors, and other proteins); immunomodulation (MSCs can suppress immune cell activation, inhibit lymphocyte proliferation, modulate natural killer T cell activation, and produce anti-inflammatory factors); angiogenesis (MSCs are capable of stimulating the growth of new blood vessels through secretion of VEGF and FGF); cellular differentiation; and anti-fibrotic effects. This is what makes MSCs potentially promising as an evolving alternative treatment.
References
Ankrum, J., & Karp, J. M. (2010). Mesenchymal stem cell therapy: Two steps forward, one step back. Trends in Molecular Medicine, 16(4), 203-209. DOI: 10.1016/j.molmed.2010.02.005
Benny, M., Courchia, B., Shrager, S., Sharma, M., Chen, P., Duara, J., Valasaki, K., Bellio, M. A., Damianos, A., Huang, J., Zambrano, R., Schmidt, A., Wu, S., Velazquez, O. C., Hare, J. M., Khan, A., & Young, K. C. (2022). Comparative Effects of Bone Marrow-derived Versus Umbilical Cord Tissue Mesenchymal Stem Cells in an Experimental Model of Bronchopulmonary Dysplasia. Stem cells translational medicine, 11(2), 189–199. DOI: https://doi.org/10.1093/stcltm/szab011
Berkowitz, A. L., Miller, M. B., Mir, S. A., Cagney, D., Chavakula, V., Guleria, I., & Aizer, A. (2016). Glioproliferative lesion of the spinal cord as a complication of “stem-cell tourism”. The New England Journal of Medicine, 375(20), 196-198. DOI: 10.1056/NEJMc1600188
Bhansali, S., Dutta, P., Kumar, V., Yadav, M. K., Jain, A., Mudaliar, S., ... & Bhansali, A. (2017). Efficacy of autologous bone marrow-derived mesenchymal stem cell and mononuclear cell transplantation in type 2 diabetes mellitus: a randomized, placebo-controlled comparative study. Stem cells and development, 26(7), 471-481. DOI: https://doi.org/10.1089/scd.2016.0275
Caplan, A. I., & Correa, D. (2011). The MSC: An injury drugstore. Cell Stem Cell, 9(1), 11-15. DOI: 10.1016/j.stem.2011.06.008
Chen, Xiaoyonng., Cai, Chuang., Xu, Dijing., Liu, Qiuli., Zheng, Shuwei., Liu, Longshan., Li, Gang., Zhang, Xiaoran., Li, Xiaoping., Ma, Yuanchen., Li, Huang., Chen, Jieying., Shi, Jiaho., Du, Xin., Xia, Wenjie., Xiang, Andy Peng & Peng, Yamen. (2019). Human Mesenchymal Stem Cell-Treated Regulatory CD23+CD43+ B Cell Alleviate Intestinal Inflammation. Theranostics, 9(16), 4633-4647. DOI: https://doi.org/10.7150%2Fthno.32260
Donega, Vanessa., H. Nijboer, Cora.,Van Velthoven, Cindy T,J., Youssef, Sameh. A., Bruin, Alain de., Bel, Fank van., Kavelaars, Annemieke & Heijnen, Cobi. J. (2015). Assesment of Long-Term Safety and Efficacy of Intranasal Mesenchymal Stem Cell Treatment for Neonatal Brain Injury in The Mouse. Basic Sciense Investigation, (5)7, 520-526. URL: https://www.nature.com/articles/pr2015145
Drela, K., Lech, W., Figiel-Dabrowska, A., Zychowicz, M., Mikula, M., Sarnowska, A., & Domanska-Janik, K. (2016). Enhanced neuro-therapeutic potential of Wharton's Jelly–derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture. Cytotherapy, 18(4), 497-509. DOI: https://doi.org/10.1016/j.jcyt.2016.01.006
Guan, L. X., Guan, H., Li, H. B., Ren, C. A., Liu, L., Chu, J. J., & Dai, L. J. (2015). Therapeutic efficacy of umbilical cord-derived mesenchymal stem cells in patients with type 2 diabetes. Experimental and therapeutic medicine, 9(5), 1623-1630. DOI: https://doi.org/10.3892/etm.2015.2339
Hashemi, S. M., Hassan, Z. M., Hossein-Khannazer, N., Pourfathollah, A. A., & Soudi, S. (2020). Investigating the route of administration and efficacy of adipose tissue-derived mesenchymal stem cells and conditioned medium in type 1 diabetic mice. Inflammopharmacology, 28, 585-601. URL: https://link.springer.com/article/10.1007/s10787-019-00661
Hashemian, S. M. R., Aliannejad, R., Zarrabi, M., Soleimani, M., Vosough, M., Hosseini, S. E., ... & Baharvand, H. (2021). Mesenchymal stem cells derived from perinatal tissues for treatment of critically ill COVID-19-induced ARDS patients: a case series. Stem cell research & therapy, 12, 1-12. URL: https://link.springer.com/article/10.1186/s13287-021-02165-4
Huang, P., Gebhart, N., Richelson, E., Brott, T. G., Meschia, J. F., & Zubair, A. C. (2014). Mechanism of mesenchymal stem cell–induced neuron recovery and anti-inflammation. Cytotherapy, 16(10), 1336-1344. DOI: https://doi.org/10.1016/j.jcyt.2014.05.007
Izadi, M., Sadr Hashemi Nejad, A., Moazenchi, M., Masoumi, S., Rabbani, A., Kompani, F., ... & Baharvand, H. (2022). Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: A phase I/II randomized placebo-controlled clinical trial. Stem Cell Research & Therapy, 13(1), 264. URL: https://link.springer.com/article/10.1186/s13287-022-02941-w
Jo, Chris H, yunchul., Lee, Young Gill., Shin, Won Young., Kim, Hyang.,Chai, Jee Won., Jeong, Eui Choel., Kim, Ji Eun., Shim, Hackjoon,. Shin, Ji Sun., Shin, Il Soeb., Ra, Joeng Chan., Oh, Sohee & Yoon, Sup Kang. (2014). Intra-Articular Injection of Mesenchymal Stem Cells For The Treatment of Osteoarthristis of The Knee: A Proof-Of-Concept Clinical Trial. Stem Cells, 32, 1254-1266. DOI: https://doi.org/10.1002/stem.1634
Koh, Y. G., Jo, S. B., Kwon, O. R., Suh, D. S., Lee, S. W., Park, S. H., & Choi, Y. J. (2013). Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 29(4), 748-755. DOI: https://doi.org/10.1016/j.arthro.2012.11.017
Lanzoni, G., Linetsky, E., Correa, D., Messinger Cayetano, S., Alvarez, R. A., Kouroupis, D., ... & Ricordi, C. (2021). Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial. Stem cells translational medicine, 10(5), 660-673. DOI: https://doi.org/10.1002/sctm.20-0472
Liang, J., Li, X., Zhang, H., Wang, D., Feng, X., Wang, H., ... & Sun, L. (2012). Allogeneic mesenchymal stem cells transplantation in patients with refractory RA. Clinical rheumatology, 31, 157-161. URL: https://link.springer.com/article/10.1007/s10067-011-1816-0
Liang, J., Zhang, H., Zhao, C., Wang, D., Ma, X., Zhao, S., ... & Sun, L. (2017). Effects of allogeneic mesenchymal stem cell transplantation in the treatment of liver cirrhosis caused by autoimmune diseases. International Journal of Rheumatic Diseases, 20(9), 1219-1226. DOI: https://doi.org/10.1111/1756-185X.13015
Li, F., Chen, X., Shang, C., Ying, Q., Zhou, X., Zhu, R., Lu, H., Hao, X., Dong, Q., & Jiang, Z. (2021). Bone Marrow Mesenchymal Stem Cells-Derived Extracellular Vesicles Promote Proliferation, Invasion and Migration of Osteosarcoma Cells via the lncRNA MALAT1/miR-143/NRSN2/Wnt/β-Catenin Axis. OncoTargets and therapy, 14, 737–749. DOI: https://doi.org/10.2147/OTT.S283459
Liu, X., Zheng, P., Wang, X., Dai, G., Cheng, H., Zhang, Z., ... & An, Y. (2014). A preliminary evaluation of efficacy and safety of Wharton’s jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus. Stem cell research & therapy, 5, 1-9. DOI: https://link.springer.com/article/10.1186/scrt446
Lou, S., Duan, Y., Nie, H., Cui, X., Du, J., & Yao, Y. (2021). Mesenchymal stem cells: Biological characteristics and application in disease therapy. Biochimie, 185, 9–21. https://doi.org/10.1016/j.biochi.2021.03.003
Mittal, R., Ocak, E., Zhu, A., Perdomo, M. M., Pena, S. A., Mittal, J., Bohorquez, J., & Eshraghi, A. A. (2020). Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Cochlear Function in an Experimental Rat Model. Anatomical record (Hoboken, N.J. : 2007), 303(3), 487–493. DOI: https://doi.org/10.1002/ar.24065
Pelttari, K., Winter, A., Steck, E., Goetzke, K., Hennig, T., Ochs, B. G., ... & Richter, W. (2006). Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis & Rheumatology, 58(10), 3100-3109. DOI: https://doi.org/10.1002/art.22136
Petrou, P., Kassis, I., Levin, N., Paul, F., Backner, Y., Benoliel, T., ... & Karussis, D. (2020). Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. Brain, 143(12), 3574-3588. DOI: https://doi.org/10.1093/brain/awaa333
Prockop, D. J. (2016). Inflammation, fibrosis, and modulation of the process by mesenchymal stem/stromal cells. Mayo Clinic Proceedings, 92(10), 1663-1675. DOI: https://doi.org/10.1016/j.matbio.2016.01.010
Ranjbaran, H., Abediankenari, S., Mohammadi, M., Jafari, N., Khalilian, A., Rahmani, Z., ... & Ebrahimi, P. (2018). Wharton's jelly derived-mesenchymal stem cells: Isolation and characterization. Acta Medica Iranica, 28-33. URL: https://acta.tums.ac.ir/index.php/acta/article/view/6567
Shu, L., Niu, C., Li, R., Huang, T., Wang, Y., Huang, M., ... & Feng, G. (2020). Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem cell research & therapy, 11, 1-11. URL: https://link.springer.com/article/10.1186/s13287-020-01875-5
Torisawa, Y. S., Spina, C. S., Mammoto, T., Mammoto, A., Weaver, J. C., Tat, T., ... & Ingber, D. E. (2014). Bone marrow–on–a–chip replicates hematopoietic niche physiology in vitro. Nature methods, 11(6), 663-669. URL: https://www.nature.com/articles/nmeth.2938
Vega, Aurelio., Martin-Ferrero, Muguel Angel., Canto, Francisco Del., Alberca, Maredes., Garcia, Veronica., Munar, Anna., Orozco, Lluis., Soler, Robert., Fuertes, Juan Jose., Huguet, Marina., Sanchez, Ana & Garcia-Sancho, Javier. (2015). Treatment of Knee Osteoarthitis With Allogeneic Bone Marrow Mesenchymal Stem Cell: A Randomized Controlled Trial. Oroginal Clinical Science, 8(99), 1681-1690. DOI: 10.1097/TP.0000000000000678
Von Bahr, L., Batsis, I., Moll, G., Hägg, M., Szakos, A., Sundberg, B., ... & Ringdén, O. (2012). Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells, 30(7), 1575-1578. DOI: https://doi.org/10.1002/stem.1118
Watanabe, Y., Tsuchiya, A., Seino, S., Kawata, Y., Kojima, Y., Ikarashi, S., ... & Terai, S. (2019). Mesenchymal stem cells and induced bone marrow-derived macrophages synergistically improve liver fibrosis in mice. Stem cells translational medicine, 8(3), 271-284. DOI: https://doi.org/10.1002/sctm.18-0105
Yousefifard, M., Nasirinezhad, F., Shardi Manaheji, H., Janzadeh, A., Hosseini, M., & Keshavarz, M. (2016). Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model. Stem cell research & therapy, 7, 1-14. URL: https://link.springer.com/article/10.1186/s13287-016-0295-2
Zhang, Chunyu., Yin, Xiaoguang., Zhang, Jinghan., Ao, Qiang., Gu, Yongquan &Liu, Ying. (2017). Clinical Observation of Umbilical Cord Mesenchymal Stem Cell Treatment of Severe Idiopathic Pulmonary Fibrosis: A Case Report. Experimental & Therapeutic Medicine, 13, 1922-1926. DOI: https://doi.org/10.3892/etm.2017.4222
Zhang, Q., Shi, S., Liu, Y., Uyanne, J., Shi, Y., Shi, S., & Le, A. D. (2009). Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. Journal of Immunology, 183(12), 7787-7798. DOI: https://doi.org/10.4049/jimmunol.0902318
License
Copyright (c) 2024 Annisa Aulia, Dessy Rismayani, Tita Nopiyanti, Zozy Aneloi Noli, Rita Maliza
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.