Draft Genome of Lysinibacillus sphaericus Isolate 229C Pathogenic to Vector Mosquitoes
Authors
Afiannisa Viersanova , Hari PurwantoDOI:
10.29303/jbt.v21i2.2802Published:
2021-07-18Issue:
Vol. 21 No. 2 (2021): Mei - AgustusKeywords:
Draft Genome, Hemolysin, Lysinibacillus sphaericus, S-layer protein, Vector mosquitoesArticles
Downloads
Additional Files
How to Cite
Downloads
Metrics
Abstract
Lysinibacillus sphaericus is widely known as a bioinsecticide agent because it shows entomopathogenic activity against vector mosquitoes, especially of Culex and Anopheles spp. This bacterium known to have variations in toxicity. Its binary toxins, which is known to have a high toxicity, has a very low genetic variation, so that resistance problems has been reported. Therefore, exploration continues to be carried out to find a new effective and potential toxin to deal with the resistance problems. This study aims to analyze the genome of isolate 229C L. sphaericus, to identify the species of isolate 229C based on the 16S rRNA gene, and to identify toxin characteristics of the 229C isolate based on the results of genome sequence analysis. The 229C isolate was previously obtained from soil sample in Indonesia and showed a high pathogenicity against C. quenquefasciatus. Molecular identification was carried out with the 16S rRNA gene analysis. While draft genome and toxin analysis performed by conducting whole genome sequencing using Illumina Hiseq 2000, 250 bp pair-end protocol. The sequenced data then analized using freely available bioinformatics tools.The results of the molecular identification showed that the closest related species of isolate 229C was L. sphaericus. The isolate 229C has a genome size of 4.65 Mbp and G+C content of 36.83%. Toxin analysis showed that this isolate did not contain Mosquitocidal toxin (Etx/Mtx), binary toxin (Bin protein), crystal toxin (Cry48/Cry49 protein), nor Sphaericolysin genes. However, there are s-layer protein and hemolysin genes that also known to be associated with the toxicity of L. sphaericus to mosquitoes and possibly, are the answer to the problem of resistance to binary toxins. This result opens the opportunity for an analysis of the effectiveness of S-layer protein and Hemolysin against resistance population mosquitoes.
References
Ahmed, I., Yokota, A., Yamazoe, A., & Fujiwara, T. (2007). Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. International Journal of Systematic and Evolutionary Microbiology, 57(5), 1117ââ¬â1125. https://doi.org/10.1099/ijs.0.63867-0
Allievi, M. C., Palomino, M. M., Acosta, M. P., Lanati, L., Ruzal, S. M., & Sánchez-Rivas, C. (2014). Contribution of S-layer proteins to the mosquitocidal activity of Lysinibacillus sphaericus. PLoS ONE, 9(10). https://doi.org/10.1371/journal.pone.0111114
Andreeva, Z. I., Nesterenko, V. F., Fomkina, M. G., Ternovsky, V. I., Suzina, N. E., Bakulina, A. Y., Solonin, A. S., & Sineva, E. V. (2007). The properties of Bacillus cereus hemolysin II pores depend on environmental conditions. Biochimica et Biophysica Acta - Biomembranes, 1768(2), 253ââ¬â263. https://doi.org/10.1016/j.bbamem.2006.11.004
Arkin, A. P., Cottingham, R. W., Henry, C. S., Harris, N. L., Stevens, R. L., Maslov, S., Dehal, P., Ware, D., Perez, F., Canon, S., Sneddon, M. W., Henderson, M. L., Riehl, W. J., Murphy-Olson, D., Chan, S. Y., Kamimura, R. T., Kumari, S., Drake, M. M., Brettin, T. S., ââ¬Â¦ Yu, D. (2018). KBase: The United States department of energy systems biology knowledgebase. Nature Biotechnology, 36(7), 566ââ¬â569. https://doi.org/10.1038/nbt.4163
Baida, G. E., & Kuzmin, N. P. (1996). Mechanism of action of hemolysin III from Bacillus cereus. Biochimica et Biophysica Acta - Biomembranes, 1284(2), 122ââ¬â124. https://doi.org/10.1016/S0005-2736(96)00168-X
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455ââ¬â477. https://doi.org/10.1089/cmb.2012.0021
Berry, C. (2012). The bacterium, Lysinibacillus sphaericus, as an insect pathogen. Journal of Invertebrate Pathology, 109(1), 1ââ¬â10. https://doi.org/10.1016/j.jip.2011.11.008
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114ââ¬â2120. https://doi.org/10.1093/bioinformatics/btu170
Bukin, Y. S., Galachyants, Y. P., Morozov, I. V., Bukin, S. V., Zakharenko, A. S., & Zemskaya, T. I. (2019). The effect of 16s rRNA region choice on bacterial community metabarcoding results. Scientific Data, 6, 1ââ¬â14. https://doi.org/10.1038/sdata.2019.7
Burgos, Y., & Beutin, L. (2010). Common origin of plasmid encoded alpha-hemolysin genes in Escherichia coli. BMC Microbiology, 10. https://doi.org/10.1186/1471-2180-10-193
Darling, A. C. E., Mau, B., Blattner, F. R., & Perna, N. T. (2004). Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Research, 14(7), 1394ââ¬â1403. https://doi.org/10.1101/gr.2289704
Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072ââ¬â1075. https://doi.org/10.1093/bioinformatics/btt086
Hernández-Santana, A., Gómez-Garzón, C., & Dussán, J. (2016). Complete genome sequence of Lysinibacillus sphaericus WHO reference strain 2362. Genome Announcements, 4(3), 9ââ¬â10. https://doi.org/10.1128/genomeA.00545-16
Hire, R. S., Hadapad, A. B., Dongre, T. K., & Kumar, V. (2009). Purification and characterization of mosquitocidal Bacillus sphaericus BinA protein. Journal of Invertebrate Pathology, 101(2), 106ââ¬â111. https://doi.org/10.1016/j.jip.2009.03.005
Hu, X., Fan, W., Han, B., Liu, H., Zheng, D., Li, Q., Dong, W., Yan, J., Gao, M., Berry, C., & Yuan, Z. (2008). Complete genome sequence of the mosquitocidal bacterium Bacillus sphaericus C3-41 and comparison with those of closely related bacillus species. Journal of Bacteriology, 190(8), 2892ââ¬â2902. https://doi.org/10.1128/JB.01652-07
Illumina Inc. (2017). Illumina sequencing introduction. Illumina Sequencing Introduction, October, 1ââ¬â8. https://www.illumina.com/documents/products/illumina_sequencing_introduction.pdf
Jeong, H., Jeong, D. E., Sim, Y. M., Park, S. H., & Choi, S. K. (2013). Genome sequence of Lysinibacillus sphaericus strain KCTC 3346T. Genome Announcements, 1(4), 4ââ¬â5. https://doi.org/10.1128/genomeA.00625-13
Johnson, J. S., Spakowicz, D. J., Hong, B. Y., Petersen, L. M., Demkowicz, P., Chen, L., Leopold, S. R., Hanson, B. M., Agresta, H. O., Gerstein, M., Sodergren, E., & Weinstock, G. M. (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications, 10(1), 1ââ¬â11. https://doi.org/10.1038/s41467-019-13036-1
Jones, G. W., Nielsenââ¬ÂLeroux, C., Yang, Y., Yuan, Z., Fiúza Dumas, V., Monnerat, R. G., & Berry, C. (2007). A new Cry toxin with a unique twoââ¬Âcomponent dependency from Bacillus sphaericus . The FASEB Journal, 21(14), 4112ââ¬â4120. https://doi.org/10.1096/fj.07-8913com
Kellen, W. R., Clark, T. B., Lindegren, J. E., Ho, B. C., Rogoff, M. H., & Singer, S. (1965). Bacillus sphaericus Neide as a pathogen of mosquitoes. Journal of Invertebrate Pathology, 7(4), 442ââ¬â448. https://doi.org/10.1016/0022-2011(65)90120-5
Krauthammer, M., Rzhetsky, A., Morozov, P., & Friedman, C. (2000). Using BLAST for identifying gene and protein names in journal articles. Gene, 259(1ââ¬â2), 245ââ¬â252. https://doi.org/10.1016/S0378-1119(00)00431-5
Lekakarn, H., Promdonkoy, B., & Boonserm, P. (2015). Interaction of Lysinibacillus sphaericus binary toxin with mosquito larval gut cells: Binding and internalization. Journal of Invertebrate Pathology, 132, 125ââ¬â131. https://doi.org/10.1016/j.jip.2015.09.010
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754ââ¬â1760. https://doi.org/10.1093/bioinformatics/btp324
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078ââ¬â2079. https://doi.org/10.1093/bioinformatics/btp352
Lozano, L. C., Ayala, J. A., & Dussán, J. (2011). Lysinibacillus sphaericus S-layer protein toxicity against Culex quinquefasciatus. Biotechnology Letters, 33(10), 2037ââ¬â2041. https://doi.org/10.1007/s10529-011-0666-9
Manjeet, K., Purushotham, P., Neeraja, C., & Podile, A. R. (2013). Bacterial chitin binding proteins show differential substrate binding and synergy with chitinases. Microbiological Research, 168(7), 461ââ¬â468. https://doi.org/10.1016/j.micres.2013.01.006
MicrobesNG. (n.d.). MicrobesNg Methods Document. Microbesng.Com.
MicrobesNG. (2018). Preparing stock tubes for MicrobesNG. 6ââ¬â7.
Newell, P. D., Roco, C. A., Fricker, A. D., Merkel, S. M., & Chandrangsu, P. (2013). A Small-Group Activity Introducing the Use and Interpretation of BLAST ââ¬Â . Journal of Microbiology & Biology Education, 14(2), 238ââ¬â243. https://doi.org/10.1128/jmbe.v14i2.637
Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Parrello, B., Shukla, M., Vonstein, V., Wattam, A. R., Xia, F., & Stevens, R. (2014). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 42(D1), 206ââ¬â214. https://doi.org/10.1093/nar/gkt1226
Peña-Montenegro, T. D., Lozano, L., & Dussán, J. (2015). Genome sequence and description of the mosquitocidal and heavy metal tolerant strain Lysinibacillus sphaericus CBAM5. Standards in Genomic Sciences, 10(FEBRUARY2015). https://doi.org/10.1186/1944-3277-10-2
Quick, V. S., & Sikela, J. (n.d.). Percent Identity of Genomic DNA and Amino Acid Sequences. Center for Academic Research and Training in Anthropogeny. Retrieved March 1, 2021, from https://carta.anthropogeny.org/moca/topics/percent-identity-genomic-dna-and-amino-acid-sequences#:~:text=Percent identity refers to a,to a degree reflects relatedness.
Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841ââ¬â842. https://doi.org/10.1093/bioinformatics/btq033
Rey, A., Silva-Quintero, L., & Dussán, J. (2016). Complete genome sequence of the larvicidal bacterium Lysinibacillus sphaericus strain OT4b.25. Genome Announcements, 4(3), 10ââ¬â12. https://doi.org/10.1128/genomeA.00257-16
Rojas-Pinzón, P. A., & Dussán, J. (2017). Contribution of Lysinibacillus sphaericus hemolysin and chitin-binding protein in entomopathogenic activity against insecticide resistant Aedes aegypti. World Journal of Microbiology and Biotechnology, 33(10), 0. https://doi.org/10.1007/s11274-017-2348-9
Rojas-Pinzón, P. A., & Dussán, J. (2017b). Contribution of Lysinibacillus sphaericus hemolysin and chitin-binding protein in entomopathogenic activity against insecticide resistant Aedes aegypti. World Journal of Microbiology and Biotechnology, 33(10), 1ââ¬â9. https://doi.org/10.1007/s11274-017-2348-9
Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.-A., & Barrell, B. (2000). Artemis: Sequence Visualization and Annotation. Bioinformatics, 16, 944ââ¬â945.
Schloss, P. D., & Handelsman, J. (2005). Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology, 71(3), 1501ââ¬â1506. https://doi.org/10.1128/AEM.71.3.1501-1506.2005
Seemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068ââ¬â2069. https://doi.org/10.1093/bioinformatics/btu153
Yan, W., Xiao, X., & Zhang, Y. (2017). Complete genome sequence of Lysinibacillus sphaericus LMG 22257, a strain with ureolytic activity inducing calcium carbonate precipitation. Journal of Biotechnology, 246, 33ââ¬â35. https://doi.org/10.1016/j.jbiotec.2017.02.016
License
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.