Stacking-Racking Analysis: Improving Physics Students' Problem-Solving Skills with ECIRR Learning Model and a Metacognitive Approach

Authors

Tanti Febriyanti , Hera Novia , Agus Danawan

DOI:

10.29303/jpft.v10i1.6805

Published:

2024-06-03

Issue:

Vol. 10 No. 1 (2024): January-June

Keywords:

ECIRR model, Metacognitive Approach, Problem-Solving Skills, Stacking-Racking Analysis

Articles

Downloads

How to Cite

Febriyanti, T., Novia, H., & Agus Danawan. (2024). Stacking-Racking Analysis: Improving Physics Students’ Problem-Solving Skills with ECIRR Learning Model and a Metacognitive Approach. Jurnal Pendidikan Fisika Dan Teknologi, 10(1), 1–9. https://doi.org/10.29303/jpft.v10i1.6805

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

A preliminary study highlights the persistent challenge of low problem-solving skills among 21st-century students. Therefore, this study examines the ECIRR learning model with a metacognitive approach to improve students' problem-solving skills in static fluid material. The method of this study is quasi-experimental with a one-group pretest-posttest design, enrolling 33 students from class XI at a public high school in Subang City. The Static Fluids Problem Solving Test (SPRING) instrument is used to collect data, which will then be analyzed using the stacking-racking technique. The results showed that ECIRR model learning with a metacognitive approach significantly improved students' problem-solving skills by 2.66 on the logit scale in the moderate category. The highest increase in problem-solving skills was on the plan a solution indicator, and the lowest was on the visualize the problem indicator. The decrease in the level of difficulty of the SPRING instrument indicates that learning has a positive impact. Thus, ECIRR model learning with a metacognitive approach can improve student problem-solving skills in a static fluid material. This study can be strengthened by using a control class to compare the results obtained in the control and experimental groups so that the effectiveness of the intervention can be determined objectively.

References

Ardiansyah, Dirgantara, Y., Agustina, R. D., & Sugilar, H. (2019). Penerapan Model Pembelajaran ECIRR (Elicit, Confront, Identify, Resolve, Reinforce) untuk Meningkatkan Kemampuan Pemecahan Masalah Peserta Didik pada Materi Fluida Statis. Jurnal Penelitian Pembelajaran Fisika, 10(1), 77–82. https://doi.org/26877/jp2f.v10i1.3543 DOI: https://doi.org/10.26877/jp2f.v10i1.3543

Batha, K., & Carroll, M. (2007). Metacognitive Training Aids Decision Making. Australian Journal of Psychology, 59(2), 64–69. https://doi.org/10.1080/00049530601148371 DOI: https://doi.org/10.1080/00049530601148371

Darwis. (2018). Meningkatkan Hasil Belajar Fisika Peserta Didik Melalui Strategi Pembelajaran Kontekstual dengan Metode Inkuiri. Jurnal Pendidikan Fisika Universitas Muhammadiyah Makassar, 5, 15–24. DOI: https://doi.org/10.26618/jpf.v6i3.1512

Davidowitz, B., & Potgieter, M. (2016). Use of the Rasch Measurement Model to Explore the Relationship between Content Knowledge and Topic-Specific Pedagogical Content Knowledge for Organic Chemistry. International Journal of Science Education, 38(9), 1483–1503. https://doi.org/10.1080/09500693.2016.1196843 DOI: https://doi.org/10.1080/09500693.2016.1196843

Güner, P., & Erbay, H. N. (2021). Metacognitive Skills and Problem-Solving. International Journal of Research in Education and Science, 7(3), 715–734. https://doi.org/https://doi.org/10.46328/ijres.1594 DOI: https://doi.org/10.46328/ijres.1594

Hamdani. (2014). Penerapan Model ECIRR Menggunakan Kombinasi Real Laboratory dan Virtual Laboratory untuk Mereduksi Miskonsepsi Mahasiswa. Jurnal Visi Ilmu Pendidikan, 6(3), 1378–1389. https://doi.org/10.26418/jvip.v6i3.9013 DOI: https://doi.org/10.26418/jvip.v6i3.9013

Hamdu, G., Hadiana, D., Sylvia, N., Apipatunnisa, I., & Yulianto, A. (2023). Measuring Changes of Students Conceptual Understanding of Literacy and Numeracy in Natural Science by Using Rasch Model. Jurnal Ilmiah Sekolah Dasar, 7(3), 489–497. https://doi.org/10.23887/jisd.v7i3.59943 DOI: https://doi.org/10.23887/jisd.v7i3.59943

Heller, P., Keith, R., & Anderson, S. (1992). Teaching Problem Solving through Cooperative Grouping. Part 1: Group versus Individual Problem Solving. American Journal of Physics, 60(7), 627–636. https://doi.org/10.1119/1.17117 DOI: https://doi.org/10.1119/1.17117

Iskandar, S. M. (2014). Pendekatan Keterampilan Metakognitif Dalam Pembelajaran Sains Di Kelas. Erudio Journal of Educational Innovation, 2(2), 13–20. https://doi.org/10.18551/erudio.2-2.3 DOI: https://doi.org/10.18551/erudio.2-2.3

Januarifin, D., Parno, & Hidayat, A. (2017). Kesalahan Siswa SMA dalam Memecahkan Masalah Fluida Statis. Pros. Seminar Pend. IPA Pascasarjana UM, 2, 143–152. DOI: https://doi.org/10.21067/mpej.v1i1.2292

Jayadi, A., Putri, D. H., & Johan, H. (2020). Identifikasi Pembekalan Keterampilan Abad 21 Pada Aspek Keterampilan Pemecahan Masalah Siswa Sma Kota Bengkulu Dalam Mata Pelajaran Fisika. Jurnal Kumparan Fisika, 3(1), 25–32. https://doi.org/10.33369/jkf.3.1.25-32 DOI: https://doi.org/10.33369/jkf.3.1.25-32

Laliyo, L. A. R. (2021). Mendiagnosis Sifat Perubahan Konseptual Siswa: Penerapan Teknik Analisis Stacking dan Racking Rasch Model. Cimahi: Deepublish.

Laliyo, L. A. R., Sumintono, B., & Panigoro, C. (2022). Measuring Changes in Hydrolysis Concept of Students Taught by Inquiry Model: Stacking and Racking Analysis Techniques in Rasch Model. Heliyon, 8(3), 1–10. https://doi.org/10.1016/j.heliyon.2022.e09126 DOI: https://doi.org/10.1016/j.heliyon.2022.e09126

Liana, L., Kosim, K., & Taufik, M. (2023). The Effect of Problem-Based Learning Model Assisted by PhET Simulations on Students’ Physics Problem-Solving Abilities. Jurnal Pendidikan Fisika Dan Teknologi (JPFT), 9(2), 262–267. https://doi.org/https://dx.doi.org/10.29303/jpft.v9i2.5285 DOI: https://doi.org/10.29303/jpft.v9i2.5285

Niss, M. (2012). Towards a Conceptual Framework for Identifying Student Difficulties with Solving Real-World Problems in Physics. Latin - American Journal of Physics Education, 6(1), 3–13.

Novia, H., Kaniawati, I., & Rusdiana, D. (2016). Identifikasi Pengetahuan Metakognisi Calon Guru Fisika. Prosiding Seminar Nasional Fisika (E-Journal) SNF2016, V, 13–18. https://doi.org/10.21009/0305010403 DOI: https://doi.org/10.21009/0305010403

Park, M., & Liu, X. (2021). An Investigation of Item Difficulties in Energy Aspects Across Biology, Chemistry, Environmental Science, and Physics. Research in Science Education, 51, 43–60. https://doi.org/10.1007/s11165-019-9819-y DOI: https://doi.org/10.1007/s11165-019-9819-y

Pentecost, T. C., & Barbera, J. (2013). Measuring Learning Gains in Chemical Education: A Comparison of Two Methods. Journal of Chemical Education, 90(7), 839–845. https://doi.org/10.1021/ed400018v DOI: https://doi.org/10.1021/ed400018v

Rosha, J. M., Hidayat, A., & Suhandi, A. (2023). STEM Quartet to Improve Creative Thinking Skills (CreaTS) for High School Students in Physics Learning. Jurnal Ilmiah Pendidikan Fisika, 7(3), 435–447. https://doi.org/10.20527/jipf.v7i3.9696 DOI: https://doi.org/10.20527/jipf.v7i3.9696

Saka, A. Z., Ebenezer, J., & Saka, T. (2024). Turkish Pre-Service Teachers’ Perceptions of Factors Influencing Physics Problem-Solving Abilities. Science Insights Education Frontiers, 20(1), 3173–3200. https://doi.org/10.15354/sief.24.or505 DOI: https://doi.org/10.15354/sief.24.or505

Sucinta, G. D., Novia, H., & Feranie, S. (2016). Penerapan Strategi Metakognisi pada Cooperative Learning Tipe STAD untuk Melihat Perkembangan Metakognisi Siswa pada Materi Elastisitas. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 2(1), 43–50. https://doi.org/10.21009/1.02107 DOI: https://doi.org/10.21009/1.02107

Sukarelawan, I., Indratno, T. K., & Ayu, S. M. (2024). N-Gain vs Stacking Analisis Perubahan Abilitas Peserta Didik dalam Desain One Group Pretest-Posttest. Yogyakarta: Suryacahya.

Tachie, S. A. (2019). Meta-cognitive Skills and Strategies Application: How this Helps Learners in Mathematics Problem-Solving. Eurasia Journal of Mathematics, Science and Technology Education, 15(5). https://doi.org/10.29333/ejmste/105364 DOI: https://doi.org/10.29333/ejmste/105364

Wade-Jaimes, K., Demir, K., & Qureshi, A. (2018). Modeling Strategies Enhanced by Metacognitive Tools in High School Physics to Support Student Conceptual Trajectories and Understanding of Electricity. Science Education, 1–33. https://doi.org/10.1002/sce.21444 DOI: https://doi.org/10.1002/sce.21444

Wenning, C. . (2008). Dealing More Effectively with Alternative Conceptions in Science. Journal of Physics Teacher Education Online, 5(1), 11–19.

Wider, C., & Wider, W. (2023). Effects of Metacognitive Skills on Physics Problem-Solving Skills Among Form Four Secondary School Students. Journal of Baltic Science Education, 22(2), 357–369. https://doi.org/10.33225/jbse/23.22.257 DOI: https://doi.org/10.33225/jbse/23.22.257

Yulianawati, D., Novia, H., & Suyana, I. (2016). Penerapan Pendekatan Metakognitif Dalam Upaya Meningkatkan Kemampuan Pemecahan Masalah Fisika Siswa SMA Pada Materi Gerak Harmonik Sederhana. V, 21–26. https://doi.org/10.21009/0305010304 DOI: https://doi.org/10.21009/0305010304

Author Biographies

Tanti Febriyanti, Universitas Pendidikan Indonesia

Physics Education Study Program

Hera Novia, Universitas Pendidikan Indonesia

Physics Education Study Program

Agus Danawan, Universitas Pendidikan Indonesia

Physics Education Study Program

License

Copyright (c) 2024 Tanti Febriyanti, Hera Novia, Agus Danawan

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Authors who publish with Jurnal Pendidikan Fisika dan Teknologi (JPFT) agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Pendidikan Fisika dan Teknologi (JPFT).
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).