Range Different of Mono-Energetic 290 MeV/u Carbon Ion Across Geant4 Version with Variation of I-values

Authors

M. Arif Efendi , Sitti Yani

DOI:

10.29303/jpft.v10i1.6933

Published:

2024-06-29

Issue:

Vol. 10 No. 1 (2024): January-June

Keywords:

Bragg peak, carbon ion, Monte Carlo simulation

Articles

Downloads

How to Cite

Efendi, M. A., & Yani, S. (2024). Range Different of Mono-Energetic 290 MeV/u Carbon Ion Across Geant4 Version with Variation of I-values. Jurnal Pendidikan Fisika Dan Teknologi, 10(1), 186–191. https://doi.org/10.29303/jpft.v10i1.6933

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

The mean ionization potential (I-value) is a primary determinant of the position of the heavy ion Bragg peak. To minimize their impact on beam range errors and quantify their uncertainties, the currently used I-values in Geant4 material database are revisited. The study aims at comparing set of I-values in different Geant4 versions and cross validation with PHITS Monte Carlo (MC) code. The Bragg curves of mono-energetic 290 MeV/u carbon ion beams in a Polymethyl Methacrylate (PMMA) phantom were simulated using Geant4 versions 10.6.2 and 11.2.1. Similar beam energies were replicated using the PHITS code. The Bragg curves showed good agreement between the two versions of Geant4 MC code for an I-value of 74 eV, corresponding to G4_PLEXIGLASS in the material database. When the I-value was lowered to 65 eV and 48 eV, the Bragg curves from Geant4 version 11.2.1 shifted to shallower depths. This research provides insights for evaluating the Geant4 physics model.

References

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … Zschiesche, D. (2003). GEANT4 - A simulation toolkit. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250–303. doi:10.1016/S0168-9002(03)01368-8 DOI: https://doi.org/10.1016/S0168-9002(03)01368-8

Allison, J., Amako, K., Apostolakis, J., Araujo, H., Dubois, P. A., Asai, M., … Peirgentili, M. (2006). Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53(1), 270–278. doi:10.1109/TNS.2006.869826 DOI: https://doi.org/10.1109/TNS.2006.869826

Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., … Yoshida, H. (2016). Recent developments in GEANT4. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835, 186–225. doi:10.1016/j.nima.2016.06.125 DOI: https://doi.org/10.1016/j.nima.2016.06.125

Baek, W. Y., Braunroth, T., De La Fuente Rosales, L., Rahm, J. M., & Rabus, H. (2020). Stopping power of water for carbon ions with energies in the Bragg peak region. Physical Review E, 102(6), 062418. doi:10.1103/PhysRevE.102.062418 DOI: https://doi.org/10.1103/PhysRevE.102.062418

Bär, E., Andreo, P., Lalonde, A., Royle, G., & Bouchard, H. (2018). Optimized I-values for use with the Bragg additivity rule and their impact on proton stopping power and range uncertainty. Physics in Medicine and Biology, 63(16), 165007. DOI: https://doi.org/10.1088/1361-6560/aad312

Borja-Lloret, M., Barrientos, L., Bernabéu, J., Lacasta, C., Muñoz, E., Ros, A., … Llosa, G. (2023). Influence of the background in Compton camera images for proton therapy treatment monitoring. Physics in Medicine & Biology, 68(14), 144001. doi:10.1088/1361-6560/ACE024 DOI: https://doi.org/10.1088/1361-6560/ace024

Goetz, G., & Mitic, M. (2018). Carbon ion beam radiotherapy (CIRT) for cancer treatment: a systematic review of effectiveness and safety for 12 oncologic indications. HTA-Projektbericht 101. Ludwig Boltzmann Institute for Health Technology Assessment., (101), 220. Retrieved from http://eprints.hta.lbg.ac.at/1174/%0Ahttp://eprints.hta.lbg.ac.at/1174/1/HTA-Projektbericht_Nr.101.pdf

Kumazaki, Y., Akagi, T., Yanou, T., Suga, D., Hishikawa, Y., & Teshima, T. (2007). Determination of the mean excitation energy of water from proton beam ranges. Radiation Measurements, 42(10), 1683–1691. doi:10.1016/J.RADMEAS.2007.10.019 DOI: https://doi.org/10.1016/j.radmeas.2007.10.019

Niita, K., Sato, T., Iwase, H., Nose, H., Nakashima, H., & Sihver, L. (2006). PHITS-a particle and heavy ion transport code system. Radiation Measurements, 41(9–10), 1080–1090. doi:10.1016/j.radmeas.2006.07.013 DOI: https://doi.org/10.1016/j.radmeas.2006.07.013

NIST. (2022, December). NIST Compounds: Geant4 Material Database — Book For Application Developers 10.6 documentation. Retrieved from https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Appendix/materialNames.html

Paul, H. (2007, February 1). The mean ionization potential of water, and its connection to the range of energetic carbon ions in water. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. North-Holland. doi:10.1016/j.nimb.2006.12.034 DOI: https://doi.org/10.1016/j.nimb.2006.12.034

PTCOG. (2024). Particle Therapy Patient Statistics (per end of 2023, provisional). Retrieved May 27, 2024, from https://www.ptcog.site/images/Statistics/Patientstatistics-provisional_Dec2023.pdf

Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S. I., … Niita, K. (2024). Recent improvements of the particle and heavy ion transport code system–PHITS version 3.33. Journal of Nuclear Science and Technology, 61(1), 127–135. doi:10.1080/00223131.2023.2275736 DOI: https://doi.org/10.1080/00223131.2023.2275736

Takada, E. (2010). Carbon Ion Radiotherapy at NIRS-HIMAC. Nuclear Physics A, 834(1–4), 730c-735c. doi:10.1016/j.nuclphysa.2010.01.132 DOI: https://doi.org/10.1016/j.nuclphysa.2010.01.132

Tsujii, H., Mizoe, J. E., Kamada, T., Baba, M., Kato, S., Kato, H., … Miyamoto, T. (2004). Overview of clinical experiences on carbon ion radiotherapy at NIRS. Radiotherapy and Oncology, 73(SUPPL. 2), S41–S49. doi:10.1016/S0167-8140(04)80012-4 DOI: https://doi.org/10.1016/S0167-8140(04)80012-4

Winterhalter, C., Taylor, M., Boersma, D., Elia, A., Guatelli, S., Mackay, R., … Aitkenhead, A. (2020). Evaluation of GATE-RTion (GATE/Geant4) Monte Carlo simulation settings for proton pencil beam scanning quality assurance. Medical Physics, 47(11), 5817–5828. doi:10.1002/mp.14481 DOI: https://doi.org/10.1002/mp.14481

Author Biographies

M. Arif Efendi, Gadjah Mada University

Department of Nuclear Engineering and Engineering Physics

Sitti Yani, IPB University

Department of Physics, Faculty of Mathematics and Natural Sciences

License

Copyright (c) 2024 M. Arif Efendi, Sitti Yani

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Authors who publish with Jurnal Pendidikan Fisika dan Teknologi (JPFT) agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Pendidikan Fisika dan Teknologi (JPFT).
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.