Performance and Characterization of Seebeck Coefficient and Power Factor in CMC/Glycerin Gel Electrolyte Based Ionic Thermoelectric
DOI:
10.29303/jpft.v10i2.7322Published:
2024-09-20Issue:
Vol. 10 No. 2 (2024): July - DecemberKeywords:
ionic thermoelectric, gel electrolytes, Seebeck coefficient, power factor, CMCArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
Ionic thermoelectric (i-TE) materials have gained significant attention for their potential to convert low-temperature thermal energy into electrical energy. In this study, gel electrolyte-based i-TE materials have been synthesized using carboxymethyl cellulose (CMC), glycerin and H3PO4 solution as electrolyte. Analysis of thermoelectric properties such as Seebeck coefficient and power factor of the gel electrolyte has been carried out. In this study, ionic conductivity and potential difference or output voltage of CMC/glycerin gel electrolyte were measured. The results of this study indicate that the ionic conductivity and output voltage of the CMC/glycerin sample increase with temperature, whereas the Seebeck coefficient and power factor tend to decrease as the temperature gradient between the hot and cold parts of the CMC/glycerin gel electrolyte sample increases. These findings suggest that the CMC/glycerin-based polymer gel electrolyte has potential for use in i-TE devices, particularly in applications where high power output is required.
References
Akhlaq, M., Mushtaq, U., Naz, S., & Uroos, M. (2023). Carboxymethyl cellulose-based materials as an alternative source for sustainable electrochemical devices: a review. In RSC Advances (Vol. 13, Issue 9, pp. 5723–5743). Royal Society of Chemistry. https://doi.org/10.1039/d2ra08244f DOI: https://doi.org/10.1039/D2RA08244F
Ali, N. M., Kareem, A. A., & Polu, A. R. (2022). Effect of Glycerin on Electrical and Thermal Properties of PVA/Copper Sulphate Gel Polymer Electrolytes. Journal of Inorganic and Organometallic Polymers and Materials, 32(10), 4070–4076. https://doi.org/10.1007/s10904-022-02417-7 DOI: https://doi.org/10.1007/s10904-022-02417-7
Aziz, S. B., Woo, T. J., Kadir, M. F. Z., & Ahmed, H. M. (2018). A conceptual review on polymer electrolytes and ion transport models. Journal of Science: Advanced Materials and Devices, 3(1), 1–17. https://doi.org/10.1016/j.jsamd.2018.01.002 DOI: https://doi.org/10.1016/j.jsamd.2018.01.002
Bhuiyan, M. R. A., Mamur, H., Ustuner, M. A., & Dilmac, O. F. (2022). Current and Future Trend Opportunities of Thermoelectric Generator Applications in Waste Heat Recovery. Gazi University Journal of Science, 35(3), 896–915. https://doi.org/10.35378/gujs.934901 DOI: https://doi.org/10.35378/gujs.934901
Chang, W. B., Fang, H., Liu, J., Evans, C. M., Russ, B., Popere, B. C., Patel, S. N., Chabinyc, M. L., & Segalman, R. A. (2016). Electrochemical Effects in Thermoelectric Polymers. ACS Macro Letters, 5(4), 455–459. https://doi.org/10.1021/acsmacrolett.6b00054 DOI: https://doi.org/10.1021/acsmacrolett.6b00054
Cheng, H., & Ouyang, J. (2022). Soret Effect of Ionic Liquid Gels for Thermoelectric Conversion. The Journal of Physical Chemistry Letters, 13(46), 10830–10842. https://doi.org/10.1021/acs.jpclett.2c02645 DOI: https://doi.org/10.1021/acs.jpclett.2c02645
Gupta, A., Jain, A., & Tripathi, S. K. (2021). Structural, electrical and electrochemical studies of ionic liquid-based polymer gel electrolyte using magnesium salt for supercapacitor application. Journal of Polymer Research, 28(7), 1–11. https://doi.org/10.1007/s10965-021-02597-9 DOI: https://doi.org/10.1007/s10965-021-02597-9
He, Y., Li, S., Chen, R., Liu, X., Odunmbaku, G. O., Fang, W., Lin, X., Ou, Z., Gou, Q., Wang, J., Ouedraogo, N. A. N., Li, J., Li, M., Li, C., Zheng, Y., Chen, S., Zhou, Y., & Sun, K. (2023). Ion–Electron Coupling Enables Ionic Thermoelectric Material with New Operation Mode and High Energy Density. Nano-Micro Letters, 15(1). https://doi.org/10.1007/s40820-023-01077-7 DOI: https://doi.org/10.1007/s40820-023-01077-7
Johannes, C., Hartung, M., & Heim, H. P. (2022). Polyurethane-Based Gel Electrolyte for Application in Flexible Electrochromic Devices. Polymers, 14(13). https://doi.org/10.3390/polym14132636 DOI: https://doi.org/10.3390/polym14132636
Li, J., Huckleby, A. B., & Zhang, M. (2022). Polymer-based thermoelectric materials: A review of power factor improving strategies. Journal of Materiomics, 8(1), 204–220. https://doi.org/10.1016/j.jmat.2021.03.013 DOI: https://doi.org/10.1016/j.jmat.2021.03.013
Muddasar, M., Menéndez, N., Quero, Á., Nasiri, M. A., Cantarero, A., García-Cañadas, J., Gómez, C. M., Collins, M. N., & Culebras, M. (2024a). Highly-efficient sustainable ionic thermoelectric materials using lignin-derived hydrogels. Advanced Composites and Hybrid Materials, 7(2), 1–14. https://doi.org/10.1007/s42114-024-00863-0 DOI: https://doi.org/10.1007/s42114-024-00863-0
Osorio, J. D., Zea, S., Rivera-Alvarez, A., Patiño-Jaramillo, G. A., Hovsapian, R., & Ordonez, J. C. (2023). Low-temperature solar thermal-power systems for residential electricity supply under various seasonal and climate conditions. Applied Thermal Engineering, 232, 120905. https://doi.org/10.1016/j.applthermaleng.2023.120905 DOI: https://doi.org/10.1016/j.applthermaleng.2023.120905
Rahman, M., & Saghir, Z. (2014). Thermodiffusion or Soret effect: Historical Review. International Journal of Heat and Mass Transfer, 73, 693. https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.057 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.057
Serale, G., Cascone, Y., Capozzoli, A., Fabrizio, E., & Perino, M. (2014). Potentialities of a low temperature solar heating system based on slurry phase change materials (PCS). Energy Procedia, 62, 355–363. https://doi.org/10.1016/j.egypro.2014.12.397 DOI: https://doi.org/10.1016/j.egypro.2014.12.397
Shao, Y., Hellström, M., Yllö, A., Mindemark, J., Hermansson, K., Behler, J., & Zhang, C. (2020). Temperature effects on the ionic conductivity in concentrated alkaline electrolyte solutions. Physical Chemistry Chemical Physics, 22(19), 10426–10430. https://doi.org/10.1039/c9cp06479f DOI: https://doi.org/10.1039/C9CP06479F
Sousa, V., Savelli, G., Lebedev, O. I., Kovnir, K., Correia, J. H., Vieira, E. M. F., Alpuim, P., & Kolen’ko, Y. V. (2022). High Seebeck Coefficient from Screen-Printed Colloidal PbSe Nanocrystals Thin Film. Materials, 15(24). https://doi.org/10.3390/ma15248805 DOI: https://doi.org/10.3390/ma15248805
Wu, X., Gao, N., Jia, H., & Wang, Y. (2021). Thermoelectric Converters Based on Ionic Conductors. Chemistry - An Asian Journal, 16(2), 129–141. https://doi.org/10.1002/asia.202001331 DOI: https://doi.org/10.1002/asia.202001331
Xie, K., & Gupta, M. C. (2020). High-temperature thermoelectric energy conversion devices using Si-Ge thick films prepared by laser sintering of nano/micro particles. IEEE Transactions on Electron Devices, 67(5), 2113–2119. https://doi.org/10.1109/TED.2020.2977832 DOI: https://doi.org/10.1109/TED.2020.2977832
Yang, B., & Portale, G. (2021). Ionic thermoelectric materials for waste heat harvesting. Colloid and Polymer Science, 299(3), 465–479. https://doi.org/10.1007/s00396-020-04792-4 DOI: https://doi.org/10.1007/s00396-020-04792-4
Zhang, X., & Zhao, L. D. (2015). Thermoelectric materials: Energy conversion between heat and electricity. In Journal of Materiomics (Vol. 1, Issue 2, pp. 92–105). Chinese Ceramic Society. https://doi.org/10.1016/j.jmat.2015.01.001 DOI: https://doi.org/10.1016/j.jmat.2015.01.001
Zhao, D., Würger, A., & Crispin, X. (2021). Ionic thermoelectric materials and devices. In Journal of Energy Chemistry (Vol. 61, pp. 88–103). Elsevier B.V. https://doi.org/10.1016/j.jechem.2021.02.022 DOI: https://doi.org/10.1016/j.jechem.2021.02.022
Author Biographies
Fadli Robiandi, Institut Teknologi Kalimantan
Dian Mart Shoodiqin , Institut Teknologi Kalimantan
Physics Study Program
Menasita Mayantasari, Institut Teknologi Kalimantan
Physics Study Program
License
Copyright (c) 2024 Fadli Robiandi, Dian Mart Shoodiqin , Menasita Mayantasari
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Jurnal Pendidikan Fisika dan Teknologi (JPFT) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Pendidikan Fisika dan Teknologi (JPFT).
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).