Monte Carlo Simulation to Test the Effectiveness of Crystal Detector Length for PHITS-Based PET Modality

Penulis

Gusti Atika Urfa , Nurma Sari , Totok Wianto , Sri C Wahyono , Arfan E Fahrudin , Amar V Nasrulloh

DOI:

10.29303/jpft.v9i1.4896

Diterbitkan:

2023-06-18

Terbitan:

Vol 9 No 1 (2023): Januari - Juni

Kata Kunci:

PET, Detector, PHITS Simulation

Articles

Cara Mengutip

Urfa, G. A., Sari, N. ., Wianto, T., Wahyono, S. C. ., Fahrudin, A. E. ., & Nasrulloh, A. V. . (2023). Monte Carlo Simulation to Test the Effectiveness of Crystal Detector Length for PHITS-Based PET Modality. Jurnal Pendidikan Fisika Dan Teknologi (JPFT), 9(1), 115–122. https://doi.org/10.29303/jpft.v9i1.4896

Unduhan

Data unduhan belum tersedia.

Metrik

Metrik sedang dimuat ...

Abstrak

PET (Positron-emission tomography) is used to determine physiological and metabolic functions in the body. Monte Carlo simulation is an important part of PET imaging, and the Particle Heavy Ion Transport code System (PHITS) is a simulation platform that can be used to perform Monte Carlo simulations. This study uses a Monte Carlo simulation based on PHITS to determine the range of gamma absorption with an energy of 511 keV in a scintillation detector crystal material. The gamma absorption range determines the effective crystal length in the PET modality. The simulation process is carried out by shooting Gamma at various types of materials, which are the materials used in PET scintillation crystals. The materials used in this simulation are NaI (Sodium Iodide), BaF2 (Barium Florida), BGO (Bismuth Germanate), and GSO (Gadolinium Oxyorthosilicate), considering their atomic number and crystal density. The crystal material is capable of absorbing gamma radiation with an energy of 511 keV with detailed crystal lengths for each NaI crystal of 0.26 cm; 0.25 cm BaF2 crystals; 0.1cm BGO crystals; and 0.18 cm GSO crystals. The crystal length from this simulation is smaller than the commercially available crystal length (range 1-3 cm). Based on the crystal length data, the most effective crystal for absorbing gamma radiation is the BGO crystal.

Referensi

Berger, A. (2003). Positron emission tomography. British Medical Journal, 326(7404), 1449. https://doi.org/10.1136/bmj.326.7404.1449

Bushong, S. C. (2005). Radiologic Science for Technologist. 1–29.

Cates, J. W., & Levin, C. S. (2018). Evaluation of a TOF-PET detector design that achieves ≤ 100 ps coincidence time resolution. 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2017 - Conference Proceedings. https://doi.org/10.1109/NSSMIC.2017.8532998

Chanho Kim, Wonhi Lee, Alima Melis, Abdallah Elmughrabi, Kisung Lee, & Chansun Park. (2021). A Review of Inorganic Scintillation Crystals for Extreme Environments. Crystals, 11(6), 669.

Hambitzer, A. (2012). Masterarbeit in Physik. September.

Iwamoto, Y., Hashimoto, S., Sato, T., Matsuda, N., Kunieda, S., Çelik, Y., Furutachi, N., & Niita, K. (2022). Benchmark study of particle and heavy-ion transport code system using shielding integral benchmark archive and database for accelerator-shielding experiments. Journal of Nuclear Science and Technology, 59(5), 665–675. https://doi.org/10.1080/00223131.2021.1993372

Melcher, C. L. (2000). Scintillation crystals for PET. Journal of Nuclear Medicine, 41(6), 1051–1055.

Podgorsak, E. . (2004). Radiation Oncology Physics: A Handbook for Teachers and Students. In Journal of Agricultural and Food Chemistry (Vol. 52, Issue 20). https://doi.org/10.1021/jf030837o

Saha, G. B. (2010). Basics of PET Imaging. 97–117. https://doi.org/10.1007/978-1-4419-0805-6

Salvadori, J., Labour, J., Odille, F., Marie, P. Y., Badel, J. N., Imbert, L., & Sarrut, D. (2020). Monte Carlo simulation of digital photon counting PET. EJNMMI Physics, 7(1). https://doi.org/10.1186/s40658-020-00288-w

Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S. ichiro, Kai, T., Tsai, P. E., Matsuda, N., Iwase, H., Shigyo, N., Sihver, L., & Niita, K. (2018). Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02. Journal of Nuclear Science and Technology, 55(6), 684–690. https://doi.org/10.1080/00223131.2017.1419890

Tai, Y. F., & Piccini, P. (2004). Applications of positron emission tomography (PET) in neurology. Journal of Neurology, Neurosurgery and Psychiatry, 75(5), 669–676. https://doi.org/10.1136/jnnp.2003.028175

Van Eijk, C. W. E. (2003). Inorganic scintillators in medical imaging detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 509(1–3), 17–25. https://doi.org/10.1016/S0168-9002(03)01542-0

Vaquero, J. J., & Kinahan, P. (2015). Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems. Annual Review of Biomedical Engineering, 17, 385–414. https://doi.org/10.1146/annurev-bioeng-071114-040723

Xie, S., Zhang, X., Zhang, Y., Ying, G., Huang, Q., Xu, J., & Peng, Q. (2020). Evaluation of various scintillator materials in radiation detector design for positron emission tomography (Pet). Crystals, 10(10), 1–15. https://doi.org/10.3390/cryst10100869

Biografi Penulis

Gusti Atika Urfa, Universitas Lambung Mangkurat

Department of Physics

Nurma Sari, Universitas Lambung Mangkurat

Department of Physics

Totok Wianto, Universitas Lambung Mangkurat

Department of Physics

Sri C Wahyono, Universitas Lambung Mangkurat

Department of Physics

Arfan E Fahrudin, Universitas Lambung Mangkurat

Department of Physics

Amar V Nasrulloh, Universitas Lambung Mangkurat

Department of Physics

Lisensi

Hak Cipta (c) 2023 Gusti Atika Urfa, Nurma Sari, Totok Wianto, Sri C Wahyono, Arfan E Fahrudin, Amar V Nasrulloh

Creative Commons License

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.

Penulis yang menerbitkan Jurnal Pendidikan Fisika dan Teknologi (JPFT) setuju dengan ketentuan sebagai berikut:

  1. Penulis memiliki hak cipta dan memberikan hak jurnal untuk publikasi pertama dengan karya yang dilisensikan secara bersamaan di bawah Lisensi Internasional Creative Commons Attribution-ShareAlike License 4.0 (Lisensi CC-BY-SA). Lisensi ini memungkinkan penulis untuk menggunakan semua artikel, kumpulan data, grafik, dan lampiran dalam aplikasi penambangan data, mesin pencari, situs web, blog, dan platform lain dengan memberikan referensi yang sesuai. Jurnal memungkinkan penulis untuk memegang hak cipta tanpa batasan dan akan mempertahankan hak penerbitan tanpa batasan.
  2. Penulis dapat membuat pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan dari karya tersebut (misalnya, mempostingnya ke penyimpanan institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya di Jurnal Pendidikan Fisika dan Teknologi (JPFT).
  3. Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, di repositori institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena hal itu dapat mengarah pada pertukaran yang produktif, serta kutipan yang lebih awal dan lebih besar dari karya yang diterbitkan (Lihat The Pengaruh Akses Terbuka).

Artikel Serupa

1 2 > >> 

Anda juga bisa Mulai pencarian similarity tingkat lanjut untuk artikel ini.