Comparative Effectiveness of Digital and Conventional Oscilloscopes in Resonance Tube Practicum
DOI:
10.29303/jpft.v11i2.10351Published:
2025-12-29Issue:
Vol. 11 No. 2 (2025): July - December (In Press)Keywords:
soundcard oscilloscope, conventional oscilloscope, learning outcomes, nonparametric analysis, resonance tube practicumArticles
Downloads
How to Cite
Downloads
Abstract
This study investigates the comparative effectiveness of digital and conventional oscilloscopes in physics learning, focusing on the resonance tube practicum as a medium for understanding acoustic wave phenomena. Digital tools such as the Soundcard Oscilloscope have been proposed as innovative and low-cost alternatives to conventional laboratory equipment, addressing resource limitations in many schools. A quantitative quasi-experimental nonequivalent control group design was employed involving two classes of eleventh-grade students. Learning outcomes were measured using validated pre-test and post-test instruments. Data were analyzed through descriptive statistics, Wilcoxon Signed Rank tests for within-group changes, and Mann–Whitney U tests for between-group comparisons due to non-normal data distribution. The experimental group demonstrated significant improvement in learning outcomes (p = 0.003), confirming the effectiveness of the digital tool, while the control group did not (p = 0.094). Although the Mann–Whitney test indicated no significant difference between groups (p = 0.873), N-Gain analysis revealed a notable contrast: a low gain (0.095) in the experimental group versus a decrease (–0.262) in the control group. This research offers novelty by directly comparing digital and conventional oscilloscopes in resonance tube experiments, highlighting the gap between statistical significance and pedagogical effectiveness. The findings demonstrate that the Soundcard Oscilloscope serves as a viable, low-cost alternative that yields greater learning gains than its conventional counterpart. These results underscore the potential of integrating affordable digital laboratory tools with active learning strategies to enhance conceptual understanding, particularly in resource-constrained educational contexts.
References
Alsharif, A. (2023). Virtual simulation lab experiments versus conventional experiments in teaching physics - comparative study. International Journal of Education, 16(1). https://doi.org/10.5296/ije.v16i1.20957
Amalissholeh, N., Sutrio, S., Rokhmat, J., & Gunada, I. W. (2023). Analisis Kesulitan Belajar Murid pada Pembelajaran Fisika di SMAN 1 Kediri. Empiricism Journal, 4(2), 356–364. https://doi.org/10.36312/ej.v4i2.1387
Ambusaidi, A., Al Musawi, A., Al-Balushi, S., & Al-Balushi, K. (2018). The impact of virtual lab learning experiences on 9th grade students’ achievement and their attitudes towards science and learning by virtual lab. Journal of Turkish Science Education, 15(2), 13-29. https://doi.org/10.11114/jets.v5i11.2743
Aminoto, T., & Agustina, D. (2020). Mahir Statistika & SPSS. Tasikmalaya: Edu Publisher.
Anggraini, W., Kurtubi, H. Z., Aprilia, N., Wardhani, A. P., & Suryadi, A. (2024). Uji Coba Konsep Pipa Organa Pada Alat Peraga Menggunakan Botol Bekas: Bantuan Aplikasi Phypox. Journal of Multidisciplinary Inquiry in Science, Technology, and Educational Research, 1(3c), 1430-1438. https://doi.org/10.32672/mister.v1i3c.1925
Aulliyah, U. A., Hakim, M. R., Dewi, S., & Suryadi, A. (2023). Analisis Pemahaman Pipa Organa Terbuka Berbantu Software Audacity Pada Alat Musik Seruling Bambu. Jurnal Fisika, 8(2). https://doi.org/10.35508/fisa.v8i2.13426
Azar, A., & Aydın Şengüleç, Özlem. (2011). Computer-Assisted and Laboratory-Assisted Teaching Methods in Physics Teaching: The Effect on Student Physics Achievement and Attitude towards Physics. International Journal of Physics and Chemistry Education, 3(SI), 43–50. https://doi.org/10.51724/ijpce.v3iSI.121
Bretz S., Fay M., Bruck L. B., & Towns M. H. (2013). What faculty interviews reveal about meaningful learning in the undergraduate laboratory. Journal of Chemical Education, 90(3), 5–7. https://doi.org/10.1021/ed300384r
Crandall, P. G., O’Bryan, C. A., Killian, S. A., Beck, D. E., Jarvis, N., & Clausen, E. (2015). A comparison of the degree of student satisfaction using a simulation or a traditional wet lab to teach physical properties of ice. Journal of Food Science Education, 14(1), 24–29.
Danim, S. (2024). Teori Belajar dan Pembelajaran di Perguruan Tinggi. Banyumas: Wawasan ilmu.
Erlinda, N. (2016). Penerapan Metode Pembelajaran Inkuiri Disertai Handout: Dampak Terhadap Hasil Belajar Fisika Murid SMAN 1 Batang Anai Padang Pariaman. Jurnal Pendidikan Fisika Al-BiRuNi, 5(2), 223-231. https://doi.org/10.24042/jipfalbiruni.v5i2.122
Fadly, W., W.W, S., & Poedjiastoeti, S. (2017). Pengembangan Program Pembelajaran Praktikum Fisika Dasar Berorientasi Heuristik Terbimbing Untuk Meningkatkan Kecakapan Akademik Mahamurid. Pendidikan Sains Pascasarjana Universitas Negeri Surabaya, 1(1), 36–43. https://doi.org/10.26740/jpps.v1n1.p36-43
Giancoli, D. C. (1998). Physics principles with applications (5th ed.). Prentice Hall International, Inc.
Hake, R. R. (1998). Interactive-engagement versus traditional methods: A sixthousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64–74. http://dx.doi.org/10.1119/1.18809
Hamed, G., & Aljanazrah, A. (2020). The effectiveness of using virtual experiments on students’ learning in the general physics lab. Journal of Information Technology Education: Research, 19, 976–995. https://doi.org/10.28945/4668
Hasanah, U., Massango, H., Tsutaoka, T., & Shimizu, K. (2017). A teaching material for learning alternating current circuit using Soundcard Oscilloscope -experiments for the electrical resonance. Unnes Science Education Journal, 6(2). https://doi.org/10.15294/usej.v6i2.15860
Iskandar, F., & Pramudya, Y. (2024). A comparative study of sound resonance using Arduino-based ultrasonic sensors and visualization analysis with Python. Jurnal Materi dan Pembelajaran Fisika, 14(2), 72–80. https://doi.org/10.20961/jmpf.v14i2.93454
Iskandar, F., & Pramudya, Y. (2025). Studi Faktor Kualitas Resonansi Bunyi pada Pipa Organa Tertutup Menggunakan Panjang Efektif. JIPFRI (Jurnal Inovasi Pendidikan Fisika dan Riset Ilmiah), 9(1), 46–51. https://doi.org/10.30599/jipfri.v9i1.4186
Laili, S., & Ishafit (2023). Penentuan Cepat Rambat Bunyi di Udara Menggunakan Aplikasi Tone Generator dan Spectroid. Bincang Sains dan Teknologi (BST), 2(1), 11-15. https://doi.org/10.56741/bst.v2i01.269
Lawrence, A., Nonye, A. N., Negedu, S. A., & Salami, D. (2023). Adapting to virtual laboratory teaching strategy during COVID-19: Its effects on physics students’ attitude in Kogi State, Nigeria. Journal of Science, Technology and Mathematics Pedagogy, 1(1).
Ojo, O. M., & Owolabi, O. T. (2020). Effects of virtual laboratory instructional strategy on secondary school students’ learning outcomes in physics practical. International Journal of Scientific and Research Publications, 10(4), 406–413. https://doi.org/10.29322/IJSRP.10.04.2020.p10048
Papalazarou, N., Lefkos, I., & Fachantidis, N. (2024). The effect of physical and virtual inquiry-based experiments on students’ attitudes and learning. Journal of Science Education and Technology, 33, 349–364. https://doi.org/10.1007/s10956-023-10088-3
Ramadhani, R., & Bina, N., S. 2021. Statistika Penelitian Pendidikan: Analisis Perhitungan Matematis dan Aplikasi SPSS. Jakarta: Kencana.
Ristanto, S., & Santoso, D. F. 2016. Uji Coba Pemanfaatan Software Soundcard Oscilloscope V1.47 untuk Praktikum Efek Doppler. Jurnal Penelitian Pembelajaran Fisika, 7 (1), 1-7. https://doi.org/10.26877/jp2f.v7i1.1147
Subarna, N. 2016. Osiloskop Berbasis PC dengan Menggunakan Fasilitas Soundcard. Jurnal Reka Elkomika, 4(2), 146-153.
Sugiyarto. 2021. Pengantar Biostatistika. Yogyakarta: Program Studi Matematika Fakultas Sains Dan Teknologi Terapan Universitas Ahmad Dahlan.
Sugiyono. 2023. Metode Penelitian Pendidikan (kuantitatif, Kualitatif, Kombinasi, R&D, dan Penelitian Pendidikan. Bandung: Alfabeta.
Sugiyono. 2024. Metode Penelitian Kuantitatif. Bandung: Alfabeta.
Supardi, B., & Kartono, A. 2017. Explore Fisika Untuk SMA/MA. Klaten: Duta.
Supasorn, S. 2012. Enhancing undergraduates’ conceptual understanding of organic acid-base-neutral extraction using inquiry-based experiments. Procedia - Social and Behavioral Sciences, 46, 4643-4650. https://doi.org/10.1016/j.sbspro.2012.06.311
Susanti, D., & Ishafit. (2025). Dampak Penggunaan Aplikasi Soundcard Oscilloscope Terhadap Pembelajaran Fisika Materi Pipa Organa Tertutup di SMA. Jurnal P4I, 5(1). 204-211. https://doi.org/10.51878/science.v5i1.4506
Telaumbanua, M,. 2022. Buku Ajar LIstrik dan Elektronika Dasar Teknik Pertanian. Pekalongan: PT. Nasya Expanding Management.
Wild, G., & Swan, G. (2011). The development of acoustic experiments for off-campus teaching and learning. Physics Education, 46(3), 281–289. https://doi.org/10.1088/0031-9120/46/3/004
Young, H. D., & Freedman, R. A. (2002). Fisika universitas. Erlangga.
Yusrizal. 2016. Pengukuran & Evaluasi Hasil dan Proses Belajar. Yogyakarta: Pale Media Prima.
Zeitnitz, C. (2008, April). Manual for the sound card oscilloscope V1.24. [Dokumen Manual Perangkat Lunak]. Diakses dari www.zeitnitz.de/Christian/Scope/Scope_en.html
Author Biographies
Desi Susanti, Universitas Ahmad Dahlan
Yudhiakto Pramudya, Universitas Ahmad Dahlan
Ishafit Ishafit, Universitas Ahmad Dahlan
Physics Education
License
Copyright (c) 2025 Desi Susanti, Yudhiakto Pramudya, Ishafit Ishafit

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Jurnal Pendidikan Fisika dan Teknologi (JPFT) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Pendidikan Fisika dan Teknologi (JPFT).
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

