An Easy-to-Use Magnetic Dynamometer for Teaching Newton’s Third Law

Authors

Fitria Silviana , Soni Prayogi

DOI:

10.29303/jpft.v9i1.4810

Published:

2023-06-13

Issue:

Vol. 9 No. 1 (2023): January - June

Keywords:

Magnometers, Teaching, Newton's third law, Experimental

Articles

Downloads

How to Cite

Silviana, F. ., & Prayogi, S. (2023). An Easy-to-Use Magnetic Dynamometer for Teaching Newton’s Third Law. Jurnal Pendidikan Fisika Dan Teknologi, 9(1), 78–86. https://doi.org/10.29303/jpft.v9i1.4810

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

The study of Newtonian mechanics gives students the first chance to question their commonsense assumptions and replace them with a more comprehensive worldview. Newtonian mechanics is a cornerstone of contemporary science. Furthermore, despite its essential significance, multiple studies demonstrate how challenging it is to properly comprehend the key elements of Newton’s equations. Any initiatives to increase their teaching options are therefore encouraged. In order to help instructors in particular applications of Newton’s third rule of action-reaction, we provide an experimental instrument. Our method consists of two flexible plastic strip dynamometers that have miniature neodymium magnetic disks connected to them. The amount of force being transferred using a magnetic field is shown by the plastic strip’s radial distance. This very affordable arrangement is simple to assemble, efficient, and appropriate for many programs that call for many trial kits.

References

Adi, R., Toifur, M., Ishafit, I., & Jaafar, R. (2020). Effect of the Magnetic Force on Ferrite Pendulum Oscillation Parameters: Parametric Analysis on Ferrite Pendulum. Indonesian Review of Physics, 3(1), Article 1. DOI: https://doi.org/10.12928/irip.v3i1.1836

Alrasheed, S. (2019). Impulse, Momentum, and Collisions. In S. Alrasheed (Ed.), Principles of Mechanics: Fundamental University Physics (pp. 73–85). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-15195-9_5

Artiani, P. A., Ratiko, R., Purwanto, Y., & Heriyanto, K. (2019). Pengaruh Perisai Radiasi Pada Penyimpanan Kering Bahan Bakar Nuklir Bekas untuk Reaktor Daya Eksperimental. Jurnal Pengembangan Energi Nuklir, 20(2), Article 2. DOI: https://doi.org/10.17146/jpen.2018.20.2.5025

Baldi, F., Ahlgren, F., Melino, F., Gabrielii, C., & Andersson, K. (2016). Optimal load allocation of complex ship power plants. Energy Conversion and Management, 124, 344–356. DOI: https://doi.org/10.1016/j.enconman.2016.07.009

Bhowmik, S. (2011). Effect of Radiation and Vacuum. In L. F. M. da Silva, A. Öchsner, & R. D. Adams (Eds.), Handbook of Adhesion Technology (pp. 823–844). Springer. DOI: https://doi.org/10.1007/978-3-642-01169-6_32

Colinge, J. P., & Colinge, C. A. (Eds.). (2002). Theory of Electrical Conduction. In Physics of Semiconductor Devices (pp. 51–72). Springer US.

Costa, E., & Muleri, F. (2014). Gamma and X-Radiation. In E. G. Njoku (Ed.), Encyclopedia of Remote Sensing (pp. 219–228). Springer. DOI: https://doi.org/10.1007/978-0-387-36699-9_49

Dutta Gupta, S., & Agarwal, A. (2017). Artificial Lighting System for Plant Growth and Development: Chronological Advancement, Working Principles, and Comparative Assessment. In S. Dutta Gupta (Ed.), Light Emitting Diodes for Agriculture: Smart Lighting (pp. 1–25). Springer. DOI: https://doi.org/10.1007/978-981-10-5807-3_1

El-Amin, A. A., & Saad, M. H. (2017). Ionizing Radiations (Alpha, Beta, Gamma) Effects on CdS / P-Si Heterojunction Solar Cell for Electrical and Optical Properties. Journal of Materials Science Research, 7(1), Article 1. DOI: https://doi.org/10.5539/jmsr.v7n1p20

Ghufron, S., & Prayogi, S. (2023). Cooling System in Machine Operation at Gas Engine Power Plant at PT Multidaya Prima Elektrindo. Journal of Artificial Intelligence and Digital Business (RIGGS), 1(2), Article 2. DOI: https://doi.org/10.31004/riggs.v1i2.21

Goiffon, V., Magnan, P., Saint-Pé, O., Bernard, F., & Rolland, G. (2009). Ionization versus displacement damage effects in proton irradiated CMOS sensors manufactured in deep submicron process. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 610(1), 225–229. DOI: https://doi.org/10.1016/j.nima.2009.05.078

Halim, M. A. (2012). Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell. Nanomaterials, 3(1), 22–47. DOI: https://doi.org/10.3390/nano3010022

Hamdani, D., Prayogi, S., Cahyono, Y., Yudoyono, G., & Darminto, D. (2022a). The Effects of Dopant Concentration on the Performances of the a-SiOx:H(p)/a-Si:H(i1)/a-Si:H(i2)/µc-Si:H(n) Heterojunction Solar Cell. International Journal of Renewable Energy Development, 11(1), 173–181. DOI: https://doi.org/10.14710/ijred.2022.40193

Hamdani, D., Prayogi, S., Cahyono, Y., Yudoyono, G., & Darminto, D. (2022b). The influences of the front work function and intrinsic bilayer (i1, i2) on p-i-n based amorphous silicon solar cell’s performances: A numerical study. Cogent Engineering, 9(1), 2110726. DOI: https://doi.org/10.1080/23311916.2022.2110726

Munazilah, S., & Yulianto, A. (2021). Development of I-SETS Thematic Teaching Materials to Improve Student Character. Phenomenon : Jurnal Pendidikan MIPA, 11(2), Article 2. DOI: https://doi.org/10.21580/phen.2021.11.2.8428

Nurhasnah, N., Festiyed, F., Asrizal, A., & Desnita, D. (2022). Project-Based Learning in Science Education: A Meta-Analysis Study. Jurnal Pendidikan MIPA, 23(1), Article 1. DOI: https://doi.org/10.23960/jpmipa/v23i1.pp198-206

Prayogi, S. (2022). Analisis Efisisensi Sel Surya a-Si:H Berdasarkan Penyusun Lapisan Aktif. Jurnal Rekayasa Bahan Alam Dan Energi Berkelanjutan, 6(2), Article 2. DOI: https://doi.org/10.21776/ub.rbaet.2022.006.02.06

Prayogi, S., Baqiya, M. A., Cahyono, Y., & Darminto. (2019). Optical Transmission of p-Type a-Si:H Thin Film Deposited by PECVD on ITO-Coated Glass. Materials Science Forum, 966, 72–76. DOI: https://doi.org/10.4028/www.scientific.net/MSF.966.72

Prayogi, S., Cahyono, Y., Hamdani, D., & Darminto. (2022). Effect of active layer thickness on the performance of amorphous hydrogenated silicon solar cells. Engineering and Applied Science Research, 49(2), Article 2.

Prayogi, S., Cahyono, Y., Iqballudin, I., Stchakovsky, M., & Darminto, D. (2021). The effect of adding an active layer to the structure of a-Si: H solar cells on the efficiency using RF-PECVD. Journal of Materials Science: Materials in Electronics, 32(6), 7609–7618. DOI: https://doi.org/10.1007/s10854-021-05477-6

Prayogi, S., & Marzuki, M. I. (2022). The Effect of Addition of SnO2 Doping on The Electronic Structure of TiO2 Thin Film as Photo-Anode in DSSC Applications. Journal of Emerging Supply Chain, Clean Energy, and Process Engineering, 1(1), Article 1. DOI: https://doi.org/10.57102/jescee.v1i1.3

Roslina, R., Samsudin, A., & Liliawati, W. (2022). Effectiveness of Project Based Learning Integrated STEM in Physics Education (STEM-PJBL): Systematic Literature Review (SLR). Phenomenon : Jurnal Pendidikan MIPA, 12(1), Article 1. DOI: https://doi.org/10.21580/phen.2022.12.1.11722

Sands, D. (2021). Physics Education Research and the Foundations of Physics: A Case Study from Thermodynamics and Statistical Mechanics. In B. G. Sidharth, J. C. Murillo, M. Michelini, & C. Perea (Eds.), Fundamental Physics and Physics Education Research (pp. 117–126). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-52923-9_11

Seiler, E., & Stamatescu, I.-O. (2007). Introduction – The Many-Fold Way of Contemporary High Energy Theoretical Physics. In I.-O. Stamatescu & E. Seiler (Eds.), Approaches to Fundamental Physics: An Assessment of Current Theoretical Ideas (pp. 3–18). Springer. DOI: https://doi.org/10.1007/978-3-540-71117-9_1

Singh, J., Kaur, P., Kaur, P., Kumar, V., Al-Buriahi, M. S., Alfryyan, N., Alrowaili, Z. A., & Singh, T. (2022). Optical and radiation shielding features for some phospho-silicate glasses. Optik, 261, 169140. DOI: https://doi.org/10.1016/j.ijleo.2022.169140

Susila, I. P., Alfiansyah, A., Istofa, I., Sukandar, S., Santoso, B., & Suratman, S. (2019). DEVELOPMENT OF MOBILE DEVICE FOR GAMMA RADIATION MEASUREMENT UTILIZING LORA AS THE COMMUNICATION MEANS. JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA, 21(2), Article 2. DOI: https://doi.org/10.17146/tdm.2019.21.2.5432

Susilawati, S., Azizah, N. A. N., & Kusuma, H. H. (2021). Investigating differences in project activities and student digital literacy between learning through electronic workbench and PhET Simulation. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 10(2), Article 2. DOI: https://doi.org/10.24042/jipfalbiruni.v10i2.10008

Syafutri, E., Widodo, W., & Pramudya, Y. (2020). Development of Interactive Physics E-Module Using the SETS (Science, Environment, Technology, Society) Approach to Improve Science Literacy Dimension of Content and Process Dimensions in Fluid Dynamics Material. Indonesian Review of Physics, 3(1), Article 1. DOI: https://doi.org/10.12928/irip.v3i1.1691

Whitaker, S. (1998). Coupled Transport in Multiphase Systems: A Theory of Drying. In J. P. Hartnett, T. F. Irvine, Y. I. Cho, & G. A. Greene (Eds.), Advances in Heat Transfer (Vol. 31, pp. 1–104). Elsevier. DOI: https://doi.org/10.1016/S0065-2717(08)70240-5

Yang, B. (2005). 9—Dynamics of Particles and Rigid Bodies. In B. Yang (Ed.), Stress, Strain, and Structural Dynamics (pp. 279–350). Academic Press. DOI: https://doi.org/10.1016/B978-012787767-9/50010-6

Zainuddin, Z., Syukri, M., Prayogi, S., & Luthfia, S. (2022). Implementation of Engineering Everywhere in Physics LKPD Based on STEM Approach to Improve Science Process Skills. Jurnal Pendidikan Sains Indonesia (Indonesian Journal of Science Education), 10(2), Article 2. DOI: https://doi.org/10.24815/jpsi.v10i2.23130

Author Biographies

Fitria Silviana, Medan State University

Department of Physics Education

Soni Prayogi, Pertamina University

Department of Electrical Engineering

License

Copyright (c) 2023 Fitria Silviana, Soni Prayogi

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Authors who publish with Jurnal Pendidikan Fisika dan Teknologi (JPFT) agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Pendidikan Fisika dan Teknologi (JPFT).
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.