Analyzing Earth's Position based on the Anisotropic Characteristics of Cosmic Microwave Background Radiation
DOI:
10.29303/jpft.v9i2.6284Published:
2023-12-20Issue:
Vol. 9 No. 2 (2023): July-DecemberKeywords:
Cosmic Microwave Background Radiation, Spherical Harmonic, DipoleArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
This paper elaborates on the results of an exhaustive study regarding the Earth's position in the universe based on the Cosmic Microwave Background (CMB) radiation map, which is the latest discovery in modern astronomy. CMB radiation provides crucial insights into the early distribution of mass and energy in the universe. The aim of this research is to understand the theory and mechanisms behind the formation of polarity structures in the CMB and analyze their correlation with Earth's position in the overall structure of the universe. Intensity measurement data of CMB radiation published by COBE, WMAP, and Planck present temperature distribution data in coordinates in FITS (Flexible Image Transport System) format files. Subsequently, a spherical harmonic transformation is performed to obtain spherical harmonic coefficients a_lm as equations that represent dipole, quadrupole, octupole models, and various other multipole models. The analysis of the correlation in the temperature distribution of CMB radiation involves detailing various patterns found in the dipole, quadrupole, and octopole models, demonstrating quasi-symmetry characteristics with Earth at its center. An analysis of anisotropic CMB data yields an interesting hypothesis that the Earth's position plays a role in shaping the structure of the universe on a certain scale. Even more extremely, it can be said that Earth is at the center of the universe. This finding prompts profound contemplation about Earth's position in the structure of the cosmos, opening the door for further research in this field.
References
Abramo, L. R., and Pereira, T. S. (2010). Testing gaussianity, homogeneity, and isotropy with the cosmic microwave background. Advances in Astronomy, DOI: https://doi.org/10.1155/2010/378203.
Aghanim, N., Armitage-Caplan, C., Arnaud, M., Ashdown, M., Atrio-Barandela, F., Aumont, J., ... & Rosset, C. (2014). Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove. Astronomy & Astrophysics, 571, A27. DOI: https://doi.org/10.48550/arXiv.1303.5087.
Aghanim, N., Majumdar, S., and Silk, J. (2008). Secondary anisotropies of the CMB. Reports on Progress in Physics, 71(6), 066902. DOI: https://doi.org/10.1088/0034-4885/71/6/066902
Alpher, R. A., & Herman, R. (1948). Evolution of the Universe. Nature, 162(4124), 774-775. DOI: https://doi.org/10.1038/162774b0
Andrade, U., et al. (2018). A model-independent test of cosmic isotropy with low-z pantheon supernovae. The Astrophysical Journal, 865(2), 119. DOI: https://doi.org/10.3847/1538-4357/aadb90
Aprilia, R., Alifaturrohmah, M., Purnama, G., & Wahyuni, S. (2022). The Examination of the Wien’s Displacement Constant with Simulation and Simple Numerical Approaches. Physics Communication, 6(2), 71-78. DOI: https://doi.org/10.15294/physcomm.v6i2.39821
Arfken, G. B., Weber, H. J., and Harris, F. E. (2011). Mathematical Methods for Physicists: A Comprehensive Guide. Academic Press.
Assis, A. K., and Neves, M. C. (1995). History of the 2.7 K temperature prior to Penzias and Wilson. Apeiron, 2(3), 79-84.
Ball, D. W. (2013). Wien’s displacement law as a function of frequency. Journal of Chemical Education, 90(9), 1250-1252. DOI: https://doi.org/10.1021/ed400113z
Bennett, C. L., et al. (2013). Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results. The Astrophysical Journal Supplement Series, 208(2), 20. DOI: https://doi.org/10.1088/0067-0049/208/2/20
Boas, M. L. (2006). Mathematical methods in the physical sciences. New Jersey : John Wiley & Sons.
Bucher, M. (2015). Physics of the cosmic microwave background anisotropy. International Journal of Modern Physics D, 24(02), 1530004. DOI: https://doi.org/10.1142/S0218271815300049.
Chiba, T., Mukohyama, S., and Nakamura, T. (1997). Anisotropy of the cosmic background radiation implies the violation of the strong energy condition in Bianchi type I universe. Physics Letters B, 408(1-4), 47-51. DOI: https://doi.org/10.1016/S0370-2693(97)00782-X.
Clarkson, C., and Maartens, R. (2010). Inhomogeneity and the foundations of concordance cosmology. Classical and Quantum Gravity, 27(12), 124008. DOI: https://doi.org/10.1088/0264-9381/27/12/124008.
Copi, C. J., Huterer, D., Schwarz, D. J., & Starkman, G. D. (2006). On the large-angle anomalies of the microwave sky. Monthly Notices of the Royal Astronomical Society, 367(1), 79-102. DOI: https://doi.org/10.1111/j.1365-2966.2005.09980.x.
Crawford, T. A. B., Hogg, D. C., and Hunt, L. E. (1961). A Horn‐Reflector Antenna for Space Communication. Bell System Technical Journal, 40(4), 1095-1116. DOI: https://doi.org/10.1002/j.1538-7305.1961.tb01639.x.
Das, R. (2015). Wavelength-and frequency-dependent formulations of Wien’s displacement law. Journal of Chemical Education, 92(6), 1130-1134. DOI: https://doi.org/10.1021/acs.jchemed.5b00116.
Derlet, P. M., and Choy, T. C. (1996). Planck's radiation law: A many-body theory perspective. Australian Journal of Physics, 49(3), 589-606. DOI: https://doi.org/10.1071/PH960589.
Dicke, R. H., Peebles, P. J. E., Roll, P. G., & Wilkinson, D. T. (1965). Cosmic black-body radiation. Astrophysical Journal, 142, 414-419. DOI: https://doi.org/10.1086/148306.
Durrer, R. (1996). Anisotropies in the cosmic microwave background: Theoretical foundations. International Journal of Theoretical Physics, 36, 2469-2487. DOI: https://doi.org/10.1007/BF02768937.
Goodman, J. (1995). Geocentrism reexamined. Physical Review D, 52(4), 1821. DOI: https://doi.org/10.1103/PhysRevD.52.1821.
Gordon, C., Hu, W., Huterer, D., & Crawford, T. (2005). Spontaneous isotropy breaking: a mechanism for CMB multipole alignments. Physical Review D, 72(10), 103002. DOI: https://doi.org/10.1103/PhysRevD.72.103002.
Gurzadyan, V. G., and Kocharyan, A. A. (1993). A new view on the problem of anisotropy of the cosmic background radiation. International Journal of Modern Physics D, 2(01), 97-104. DOI: https://doi.org/10.1142/S0218271893000088.
Hanisch, R. J., Farris, A., Greisen, E. W., Pence, W. D., Schlesinger, B. M., Teuben, P. J., ... & Warnock, A. (2001). Definition of the flexible image transport system (FITS). Astronomy and Astrophysics, 376(1), 359-380. DOI: https://doi.org/10.1051/0004-6361:20010923.
Hinshaw, G., Nolta, M. R., Bennett, C. L., Bean, R., Doré, O., Greason, M. R., ... & Wright, E. L. (2007). Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Temperature analysis. The Astrophysical Journal Supplement Series, 170(2), 288. DOI: https://doi.org/10.1086/513698.
Hinshaw, G., Weiland, J. L., Hill, R. S., Odegard, N., Larson, D., Bennett, C. L., ... & Wright, E. L. (2009). Five-year Wilkinson Microwave Anisotropy Probe* observations: Data processing, sky maps, and basic results. The Astrophysical Journal Supplement Series, 180(2), 225. DOI: https://doi.org/10.1088/0067-0049/180/2/225.
Hu, W. (2006). Concepts in CMB anisotropy formation. In The Universe at High-z, Large-Scale Structure and the Cosmic Microwave Background (pp. 207-239). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/BFb0102588.
Land, K., and Magueijo, J. (2007). The axis of evil revisited. Monthly Notices of the Royal Astronomical Society, 378(1), 153-158. DOI: https://doi.org/10.1111/j.1365-2966.2007.11749.x.
Lukash, V. (1998, December 16-21). Anisotropy of CMB and Cosmological Model. In N. Dadhich & J. Narlikar (Eds.), Gravitation and Relativity: At the turn of the Millennium, 15th International Conference on General Relativity and Gravitation (p. 343). Inter-University Centre for Astronomy and Astrophysics. DOI: https://doi.org/10.48550/arXiv.astro-ph/9803212.
Narlikar, J. V., and Wickramasinghe, N. C. (1967). Microwave background in a steady-state universe. Nature, 216(5110), 43-44. DOI: https://doi.org/10.1038/216043a0.
Peebles, P. J. E. (1993). Principles of Physical Cosmology (Vol. 27). Princeton University Press.
Peebles, P. J. E., Schramm, D. N., Turner, E. L., & Kron, R. G. (1991). The case for the relativistic hot big bang cosmology. Nature, 352(6338), 769-776. DOI: https://doi.org/10.1038/352769a0.
Pence, W. D., Chiappetti, L., Page, C. G., Shaw, R. A., & Stobie, E. (2010). Definition of the flexible image transport system (FITS), version 3.0. Astronomy and Astrophysics, 524, A42. DOI: https://doi.org/10.1051/0004-6361/201015362.
Penzias, A.A. and Wilson, R.W. (1965) A Measurement of Excess Antenna Temperature at 4080 Mc/s. The Astrophysical Journal, 142, 419-421. DOI: https://doi.org/10.1086/148307.
Planck, M. (1900). The theory of heat radiation. Entropie, 144(190), 164.
Schwarz, D. J., Starkman, G. D., Huterer, D., & Copi, C. J. (2004). Is the low-ℓ microwave background cosmic? Physical Review Letters, 93(22), 221301. DOI: https://doi.org/10.1103/PhysRevLett.93.221301.
Schwarz, D. J., Copi, C. J., Huterer, D., & Starkman, G. D. (2016). CMB anomalies after Planck. Classical and Quantum Gravity, 33(18), 184001. DOI: https://doi.org/10.1088/0264-9381/33/18/184001.
Smoot, G. F., Gorenstein, M. V., and Muller, R. A. (1977). Detection of anisotropy in the cosmic blackbody radiation. Physical Review Letters, 39(14), 898. DOI: https://doi.org/10.1103/PhysRevLett.39.898.
Snyder, J. P. (1987). Map Projections—A Working Manual (Vol. 1395). US Government Printing Office.
Snyder, J. P. (1997). Flattening the earth: two thousand years of map projections. University of Chicago Press.
Snyder, J. P., and Steward, H. (Eds.). (1989). Bibliography of Map Projections (No. 1856). US Government Printing Office.
Snyder, J. P., and Voxland, P. M. (1989). An Album of Map Projections (No. 1453). US Government Printing Office.
Starkman, G.D., Copi, C.J., Huterer, D., & Schwarz, D.J. (2012). The Oddly Quiet Universe: How the CMB challenges cosmology's standard model. Romanian Journal of Physics, 57, 979-991. DOI: https://doi.org/10.48550/arXiv.1201.2459.
Tegmark, M., de Oliveira-Costa, A., and Hamilton, A. J. (2003). High resolution foreground cleaned CMB map from WMAP. Physical Review D, 68(12), 123523. DOI: https://doi.org/10.1103/PhysRevD.68.123523.
Weinberg, S. (2008). Cosmology. Oxford : Oxford University Press.
Williams, B. W. (2014). A Specific Mathematical Form for Wien’s Displacement Law as v max/T= constant. Journal of Chemical Education, 91(5), 623-623. DOI: https://doi.org/10.1021/ed400827f.
WMAP. (2014). Fluctuations in the Cosmic Microwave Background. Retrieved from https://wmap.gsfc.nasa.gov/universe/bb_cosmo_ fluct.html.
Zed, M. (2008). Metode Penelitian Kepustakaan. Yayasan Pustaka Obor Indonesia.
Zhou, Y., Zhao, Z.-C., and Chang, Z. (2017). Searching for a cosmological preferred direction with 147 rotationally supported galaxies. The Astrophysical Journal, 847(2), 86. DOI: https://doi.org/10.3847/1538-4357/aa8991
Author Biographies
Muhammad Khaidir Komala, 081369710902
Nama saya Muhammad Khaidir Komala, S.Si (Lahat, 30 juni 1997), saya adalah seorang mahasiswa pascasarjana di jurusan Fisika fakultas MIPA Universitas Sriwijaya, Pendidikan terakhir saya S1-Fisika di jurusan yang sama.
Aminuddina Bama, 081328740911
Nama saya Akhmad Aminuddin Bama, saya adalah seorang Dosen Fisika Teori di Jurusan Fisika, Fakultas MIPA, Universitas Sriwijaya. Pendidikan terakhir saya sebagai berikut;
- S1 Fisika - Institut Teknologi Sepuluh November (1995)
- S2 Fisika - Universitas Gadjah Mada (2003)
- S3 Fisika - Universitas Gadjah Mada (2007)
Supardi
Nama saya Supardi, saya adalah seorang Dosen Fisika Teori di Jurusan Fisika, Fakultas MIPA, Universitas Sriwijaya. Pendidikan terakhir saya sebagai berikut;
- S1 Pendidikan Fisika - Universitas Sriwijaya (1997)
- S2 Fisika - Institut Teknologi Bandung (2003)
- S3 Fisika - Institut Teknologi Bandung (2007)
License
Copyright (c) 2023 Muhammad Khaidir Komala, Aminuddina Bama, Supardi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Jurnal Pendidikan Fisika dan Teknologi (JPFT) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Pendidikan Fisika dan Teknologi (JPFT).
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).