Forward Modeling of Gravity Anomalies for Identification of Burried Cylindrical Body Using Radial Derivative

Penulis

Muhammad Zuhdi , Syahrial Ayub , Syamsuddin Syamsuddin2

DOI:

10.29303/jpft.v10i`1.7077

Diterbitkan:

2024-06-29

Terbitan:

Vol 10 No `1 (2024): January-June

Kata Kunci:

Radial Derivatives, Gravity Anomaly, Cylinder

Articles

Cara Mengutip

Zuhdi, M., Ayub, S., & Syamsuddin2, S. (2024). Forward Modeling of Gravity Anomalies for Identification of Burried Cylindrical Body Using Radial Derivative. Jurnal Pendidikan Fisika Dan Teknologi (JPFT), 10(`1), 192–199. https://doi.org/10.29303/jpft.v10i`1.7077

Unduhan

Data unduhan belum tersedia.

Metrik

Metrik sedang dimuat ...

Abstrak

Radial Derivative Forward Modeling of Gravity Anomalies for Identification of Cylindrical Geological Features. The gravity method is a geophysical method with exploration costs that are quite cheap compared to other geophysical methods. This method is based on the density contrast of the target body with the surrounding. The cylindrical body is one of the targets among various other geological features. This research was conducted to test the ability of radial derivatives of gravity anomalies for targets in the form of cylindrical body. Radial derivatives consist of a first derivative and a second derivative. Forward modeling of cylindrical geological features is carried out analytically and with finite elements. Both calculations were carried out with a computer program based on Matlab. The results show that there is no difference in results either analytically or finite element wise. This method has been proven to be able to provide clear boundary positions on cylindrical geological features.

Referensi

Akasaka, C., & Nakanishi, S. (2000). Evaluation of Microgravity Background at the Undisturbed Oguni Geothermal Field, Japan. Proceedings, Twenty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University.

Davis, K., Li, Y., & Batzle, M. (2008). Time-lapse gravity monitoring: A systematic 4D approach with application to aquifer storage and recovery. Geophysics, 73(6), WA61-WA69.

Eiken, O., Stenvold, T., Zumberge, M., Alnes, H., & Sasagawa, G. (2008). Gravimetric monitoring of gas production from the Troll field. Geophysics, 73(6), WA149-WA154.

Grand, F.S. & West, G.F. (1965). Interpretation Theory injeksi Applied Geophysics, McGraw Hill Inc..

Gettings, P., Harris, R. N., Allis, R. G., & Chapman, D. S. (2002). Gravity signals at the Geysers geothermal system. Transactions-Geothermal Resources Council, 425-430.

Kumar, S., Rosat, S., Hinderer, J., Mouyen, M., Boy, J. P., & Israil, M. (2023). Delineation of aquifer boundary by two vertical superconducting gravimeters in a karst hydrosystem, France. Pure and Applied Geophysics, 180(2), 611-628. https://doi.org/10.1007/s00024-022-03186-7

Kuhn, M., & Hirt, C. (2016). Topographic gravitational potential up to second-order derivatives: an examination of approximation errors caused by rock-equivalent topography (RET). Journal of Geodesy, 90(9), 883-902. DOI 10.1007/s00190-016-0917-6

Nabighian, M.N., Ander,M.E., Grauch, V.J.S.,Hansen, R.O., LaFehr, T.R., Li, Y., Pearson, W.C., Pierce, J.W., Phillips, J.D., and Ruder, M.E. (2005). 75th Anniversary: Historical development of the gravity method in exploration, Geophysics, Vol. 70 (6),. P 63ND-89ND.

Rahman, A., Mashud, M. I., Rahmawati, A. D., Susilo, A., & Sarkowi, M. (2007). Hydrocarbon Reservoir Monitoring Using Gravity 4d Method, In “X” Field in Southern Sumatra Area. In Proceedings Joint Convention Bali 2007The 32nd HAGI And The 36th IAGI Annual Convention and Exhibition.

Reynolds, J.M. (1997). An introduction to applied and environmental geophysics. John Wiley & Sons, Chichester

Riccardi, U., Hinderer, J., Zahran, K., Issawy, E., Rosat, S., Littel, F., & Ali, S. (2023). A first reliable gravity tidal model for lake Nasser region (Egypt). Pure and Applied Geophysics, 180(2), 661-682. https://doi.org/10.1007/s00024-022-03087-9.

Sarkowi, M., Kadir, W.G.A., Santoso. Dj. (2005). Strategy of 4D Microgravity Survey for the Monitoring of Fluid Dynamics in the Subsurface, Proceedings World Geothermal Congress, Antalya, Turkey, 24-29 April 2005

Šprlák, M., Han, S. C., & Featherstone, W. E. (2018). Forward modelling of global gravity fields with 3D density structures and an application to the high-resolution (~ 2 km) gravity fields of the Moon. Journal of Geodesy, 92(8), 847-862. https://doi.org/10.1007/s00190-017-1098-7

Telford, W.M., Geldart, L.P., Sherif, R.E., and Keys, D.A. (1990). Applied Geophysics. Cambridge University Press: Cambridge.

Tenzer, R., Novák, P., Vajda, P., Gladkikh, V., & Hamayun. (2012). Spectral harmonic analysis and synthesis of Earth’s crust gravity field. Computational Geosciences, 16, 193-207. DOI 10.1007/s10596-011-9264-0

Zuhdi, M., & Sismanto. (2013). Response Of Time Lapse Gravity Anomaly Model Of Gas Injection In Reservoir And Water Table Changes On It’s Near Surface. Proceedings of Basic Sciences Converence 2013, Brawijaya University

Biografi Penulis

Muhammad Zuhdi, FKIP Universitas Mataram

I was born in Yogyakarta at December 29th, 1970. Graduated from Geophysics Dept. FMIPA UGM Yogyakarta in 1998. Master degree at Geophysics Dept, FIKTM ITB Bandung. I now teach physics in Universitas Mataram.

Syahrial Ayub, University of Mataram

Physics Education Study Program

Syamsuddin Syamsuddin2, University of Mataram

Physics Study Program

Lisensi

Hak Cipta (c) 2024 Muhammad Zuhdi, Syahrial Ayub, Syamsuddin Syamsuddin2

Creative Commons License

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.

Penulis yang menerbitkan Jurnal Pendidikan Fisika dan Teknologi (JPFT) setuju dengan ketentuan sebagai berikut:

  1. Penulis memiliki hak cipta dan memberikan hak jurnal untuk publikasi pertama dengan karya yang dilisensikan secara bersamaan di bawah Lisensi Internasional Creative Commons Attribution-ShareAlike License 4.0 (Lisensi CC-BY-SA). Lisensi ini memungkinkan penulis untuk menggunakan semua artikel, kumpulan data, grafik, dan lampiran dalam aplikasi penambangan data, mesin pencari, situs web, blog, dan platform lain dengan memberikan referensi yang sesuai. Jurnal memungkinkan penulis untuk memegang hak cipta tanpa batasan dan akan mempertahankan hak penerbitan tanpa batasan.
  2. Penulis dapat membuat pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan dari karya tersebut (misalnya, mempostingnya ke penyimpanan institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya di Jurnal Pendidikan Fisika dan Teknologi (JPFT).
  3. Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, di repositori institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena hal itu dapat mengarah pada pertukaran yang produktif, serta kutipan yang lebih awal dan lebih besar dari karya yang diterbitkan (Lihat The Pengaruh Akses Terbuka).

Artikel paling banyak dibaca berdasarkan penulis yang sama

<< < 1 2 3 > >>